Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Cell ; 186(3): 466-468, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36736299

ABSTRACT

Microbiota-induced IL-17 production mediates CNS processes and animal behavior. However, its role on the peripheral nervous system (PNS) remains largely unknown. Enamorado et al. demonstrate that commensal-specific Th17 cells are recalled following tissue injury to support local nerve regeneration, a process orchestrated by IL-17 signaling on peripheral neurons.


Subject(s)
Central Nervous System , Interleukin-17 , Animals , Peripheral Nervous System , Nerve Regeneration/physiology , Signal Transduction , Peripheral Nerves , Axons/physiology
2.
Cell ; 185(20): 3807-3822.e12, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36179671

ABSTRACT

Fungal microorganisms (mycobiota) comprise a small but immunoreactive component of the human microbiome, yet little is known about their role in human cancers. Pan-cancer analysis of multiple body sites revealed tumor-associated mycobiomes at up to 1 fungal cell per 104 tumor cells. In lung cancer, Blastomyces was associated with tumor tissues. In stomach cancers, high rates of Candida were linked to the expression of pro-inflammatory immune pathways, while in colon cancers Candida was predictive of metastatic disease and attenuated cellular adhesions. Across multiple GI sites, several Candida species were enriched in tumor samples and tumor-associated Candida DNA was predictive of decreased survival. The presence of Candida in human GI tumors was confirmed by external ITS sequencing of tumor samples and by culture-dependent analysis in an independent cohort. These data implicate the mycobiota in the pathogenesis of GI cancers and suggest that tumor-associated fungal DNA may serve as diagnostic or prognostic biomarkers.


Subject(s)
Lung Neoplasms , Mycobiome , Biomarkers , Candida/genetics , DNA, Fungal , Fungi/genetics , Humans
3.
Cell ; 185(5): 831-846.e14, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35176228

ABSTRACT

Fungal communities (the mycobiota) are an integral part of the gut microbiota, and the disruption of their integrity contributes to local and gut-distal pathologies. Yet, the mechanisms by which intestinal fungi promote homeostasis remain unclear. We characterized the mycobiota biogeography along the gastrointestinal tract and identified a subset of fungi associated with the intestinal mucosa of mice and humans. Mucosa-associated fungi (MAF) reinforced intestinal epithelial function and protected mice against intestinal injury and bacterial infection. Notably, intestinal colonization with a defined consortium of MAF promoted social behavior in mice. The gut-local effects on barrier function were dependent on IL-22 production by CD4+ T helper cells, whereas the effects on social behavior were mediated through IL-17R-dependent signaling in neurons. Thus, the spatial organization of the gut mycobiota is associated with host-protective immunity and epithelial barrier function and might be a driver of the neuroimmune modulation of mouse behavior through complementary Type 17 immune mechanisms.


Subject(s)
Gastrointestinal Microbiome , Mycobiome , Receptors, Interleukin-17/metabolism , Social Behavior , Animals , Fungi , Immunity, Mucosal , Intestinal Mucosa , Mice , Mucous Membrane
4.
Cell ; 184(4): 1017-1031.e14, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33548172

ABSTRACT

Antibodies mediate natural and vaccine-induced immunity against viral and bacterial pathogens, whereas fungi represent a widespread kingdom of pathogenic species for which neither vaccine nor neutralizing antibody therapies are clinically available. Here, using a multi-kingdom antibody profiling (multiKAP) approach, we explore the human antibody repertoires against gut commensal fungi (mycobiota). We identify species preferentially targeted by systemic antibodies in humans, with Candida albicans being the major inducer of antifungal immunoglobulin G (IgG). Fungal colonization of the gut induces germinal center (GC)-dependent B cell expansion in extraintestinal lymphoid tissues and generates systemic antibodies that confer protection against disseminated C. albicans or C. auris infection. Antifungal IgG production depends on the innate immunity regulator CARD9 and CARD9+CX3CR1+ macrophages. In individuals with invasive candidiasis, loss-of-function mutations in CARD9 are associated with impaired antifungal IgG responses. These results reveal an important role of gut commensal fungi in shaping the human antibody repertoire through CARD9-dependent induction of host-protective antifungal IgG.


Subject(s)
Antibodies, Fungal/immunology , CARD Signaling Adaptor Proteins/metabolism , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Immunity , Immunoglobulin G/immunology , Mycobiome/immunology , Animals , B-Lymphocytes/immunology , Candida albicans/immunology , Candidiasis/immunology , Candidiasis/microbiology , Feces/microbiology , Germinal Center/immunology , Humans , Mice, Inbred C57BL , Phagocytes/metabolism , Polymorphism, Single Nucleotide/genetics , Protein Binding , Signal Transduction
5.
Nat Immunol ; 24(11): 1879-1889, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37872315

ABSTRACT

Gastrointestinal fungal dysbiosis is a hallmark of several diseases marked by systemic immune activation. Whether persistent pathobiont colonization during immune alterations and impaired gut barrier function has a durable impact on host immunity is unknown. We found that elevated levels of Candida albicans immunoglobulin G (IgG) antibodies marked patients with severe COVID-19 (sCOVID-19) who had intestinal Candida overgrowth, mycobiota dysbiosis and systemic neutrophilia. Analysis of hematopoietic stem cell progenitors in sCOVID-19 revealed transcriptional changes in antifungal immunity pathways and reprogramming of granulocyte myeloid progenitors (GMPs) for up to a year. Mice colonized with C. albicans patient isolates experienced increased lung neutrophilia and pulmonary NETosis during severe acute respiratory syndrome coronavirus-2 infection, which were partially resolved with antifungal treatment or by interleukin-6 receptor blockade. sCOVID-19 patients treated with tocilizumab experienced sustained reductions in C. albicans IgG antibodies titers and GMP transcriptional changes. These findings suggest that gut fungal pathobionts may contribute to immune activation during inflammatory diseases, offering potential mycobiota-immune therapeutic strategies for sCOVID-19 with prolonged symptoms.


Subject(s)
COVID-19 , Mycobiome , Humans , Animals , Mice , Antifungal Agents , Dysbiosis , Neutrophils , Candida albicans , Immunoglobulin G
6.
Cell ; 183(2): 411-428.e16, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32970988

ABSTRACT

The colon is primarily responsible for absorbing fluids. It contains a large number of microorganisms including fungi, which are enriched in its distal segment. The colonic mucosa must therefore tightly regulate fluid influx to control absorption of fungal metabolites, which can be toxic to epithelial cells and lead to barrier dysfunction. How this is achieved remains unknown. Here, we describe a mechanism by which the innate immune system allows rapid quality check of absorbed fluids to avoid intoxication of colonocytes. This mechanism relies on a population of distal colon macrophages that are equipped with "balloon-like" protrusions (BLPs) inserted in the epithelium, which sample absorbed fluids. In the absence of macrophages or BLPs, epithelial cells keep absorbing fluids containing fungal products, leading to their death and subsequent loss of epithelial barrier integrity. These results reveal an unexpected and essential role of macrophages in the maintenance of colon-microbiota interactions in homeostasis. VIDEO ABSTRACT.


Subject(s)
Gastrointestinal Microbiome/physiology , Intestinal Mucosa/metabolism , Macrophages/metabolism , Animals , Colon/metabolism , Epithelial Cells/metabolism , Epithelium , Female , Homeostasis , Immunity, Innate/immunology , Intestinal Mucosa/microbiology , Macrophages/physiology , Male , Mice , Mice, Inbred C57BL , Microbiota , Signal Transduction
7.
Nat Immunol ; 18(8): 851-860, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28722709

ABSTRACT

The study of the intestinal microbiota has begun to shift from cataloging individual members of the commensal community to understanding their contributions to the physiology of the host organism in health and disease. Here, we review the effects of the microbiome on innate and adaptive immunological players from epithelial cells and antigen-presenting cells to innate lymphoid cells and regulatory T cells. We discuss recent studies that have identified diverse microbiota-derived bioactive molecules and their effects on inflammation within the intestine and distally at sites as anatomically remote as the brain. Finally, we highlight new insights into how the microbiome influences the host response to infection, vaccination and cancer, as well as susceptibility to autoimmune and neurodegenerative disorders.


Subject(s)
Gastrointestinal Microbiome/immunology , Infections/immunology , Inflammation/immunology , Neoplasms/immunology , Adaptive Immunity/immunology , Antigen-Presenting Cells/immunology , Autoimmune Diseases/immunology , Humans , Immunity, Innate/immunology , Immunity, Mucosal/immunology , Lymphocytes/immunology , Neurodegenerative Diseases/immunology , Symbiosis , T-Lymphocytes, Regulatory/immunology , Vaccination
8.
Immunity ; 50(6): 1365-1379, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31216461

ABSTRACT

The mammalian intestine is colonized by a wealth of microorganisms-including bacteria, viruses, protozoa, and fungi-that are all integrated into a functional trans-kingdom community. Characterization of the composition of the fungal community-the mycobiota-has advanced further than the much-needed mechanistic studies. Recent findings have revealed roles for the gut mycobiota in the regulation of host immunity and in the development and progression of human diseases of inflammatory origin. We review these findings here while placing them in the context of the current understanding of the pathways and cellular networks that induce local and systemic immune responses to fungi in the gastrointestinal tract. We discuss gaps in knowledge and argue for the importance of considering bacteria-fungal interactions as we aim to define the roles of mycobiota in immune homeostasis and immune-associated pathologies.


Subject(s)
Disease Susceptibility , Gastroenteritis/etiology , Gastrointestinal Microbiome/immunology , Immunity , Adaptive Immunity , Animals , Disease Susceptibility/immunology , Gastroenteritis/metabolism , Homeostasis , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate
9.
Nature ; 603(7902): 672-678, 2022 03.
Article in English | MEDLINE | ID: mdl-35296857

ABSTRACT

The fungal microbiota (mycobiota) is an integral part of the complex multikingdom microbial community colonizing the mammalian gastrointestinal tract and has an important role in immune regulation1-6. Although aberrant changes in the mycobiota have been linked to several diseases, including inflammatory bowel disease3-9, it is currently unknown whether fungal species captured by deep sequencing represent living organisms and whether specific fungi have functional consequences for disease development in affected individuals. Here we developed a translational platform for the functional analysis of the mycobiome at the fungal-strain- and patient-specific level. Combining high-resolution mycobiota sequencing, fungal culturomics and genomics, a CRISPR-Cas9-based fungal strain editing system, in vitro functional immunoreactivity assays and in vivo models, this platform enables the examination of host-fungal crosstalk in the human gut. We discovered a rich genetic diversity of opportunistic Candida albicans strains that dominate the colonic mucosa of patients with inflammatory bowel disease. Among these human-gut-derived isolates, strains with high immune-cell-damaging capacity (HD strains) reflect the disease features of individual patients with ulcerative colitis and aggravated intestinal inflammation in vivo through IL-1ß-dependent mechanisms. Niche-specific inflammatory immunity and interleukin-17A-producing T helper cell (TH17 cell) antifungal responses by HD strains in the gut were dependent on the C. albicans-secreted peptide toxin candidalysin during the transition from a benign commensal to a pathobiont state. These findings reveal the strain-specific nature of host-fungal interactions in the human gut and highlight new diagnostic and therapeutic targets for diseases of inflammatory origin.


Subject(s)
Fungi , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Microbiota , Mycobiome , Animals , CRISPR-Cas Systems , Candida albicans , Fungi/genetics , Fungi/pathogenicity , Genetic Variation , Humans , Immunity , Inflammation , Mammals
10.
Nat Immunol ; 16(6): 599-608, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25915732

ABSTRACT

Diverse innate lymphoid cell (ILC) subtypes have been defined on the basis of effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways that lead to ILC-lineage specification remain poorly characterized. Here we found that the transcriptional regulator TOX was required for the in vivo differentiation of common lymphoid progenitors into ILC lineage-restricted cells. In vitro modeling demonstrated that TOX deficiency resulted in early defects in the survival or proliferation of progenitor cells, as well as ILC differentiation at a later stage. In addition, comparative transcriptome analysis of bone marrow progenitors revealed that TOX-deficient cells failed to upregulate many genes of the ILC program, including genes that are targets of Notch, which indicated that TOX is a key determinant of early specification to the ILC lineage.


Subject(s)
Homeodomain Proteins/metabolism , Killer Cells, Natural/physiology , Lymphocyte Subsets/physiology , Lymphoid Progenitor Cells/physiology , Receptors, Notch/metabolism , Animals , Bone Marrow Cells/physiology , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Cells, Cultured , Female , Homeodomain Proteins/genetics , Immunity, Innate/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, Notch/genetics , Transcriptome
11.
Semin Immunol ; 67: 101757, 2023 05.
Article in English | MEDLINE | ID: mdl-37003056

ABSTRACT

The dynamic and complex community of microbes that colonizes the intestines is composed of bacteria, fungi, and viruses. At the mucosal surfaces, immunoglobulins play a key role in protection against bacterial and fungal pathogens, and their toxins. Secretory immunoglobulin A (sIgA) is the most abundantly produced antibody at the mucosal surfaces, while Immunoglobulin G (IgG) isotypes play a critical role in systemic protection. IgA and IgG antibodies with reactivity to commensal fungi play an important role in shaping the mycobiota and host antifungal immunity. In this article, we review the latest evidence that establishes a connection between commensal fungi and B cell-mediated antifungal immunity as an additional layer of protection against fungal infections and inflammation.


Subject(s)
Antifungal Agents , Immunoglobulin A, Secretory , Humans , Immunoglobulin G , Bacteria , Immunity, Mucosal , Immunoglobulins
13.
Gastroenterology ; 160(4): 1050-1066, 2021 03.
Article in English | MEDLINE | ID: mdl-33347881

ABSTRACT

The intestinal microbiota comprises diverse fungal and viral components, in addition to bacteria. These microbes interact with the immune system and affect human physiology. Advances in metagenomics have associated inflammatory and autoimmune diseases with alterations in fungal and viral species in the gut. Studies of animal models have found that commensal fungi and viruses can activate host-protective immune pathways related to epithelial barrier integrity, but can also induce reactions that contribute to events associated with inflammatory bowel disease. Changes in our environment associated with modernization and the COVID-19 pandemic have exposed humans to new fungi and viruses, with unknown consequences. We review the lessons learned from studies of animal viruses and fungi commonly detected in the human gut and how these might affect health and intestinal disease.


Subject(s)
Gastrointestinal Microbiome/physiology , Immunity/immunology , Inflammatory Bowel Diseases/etiology , Mycobiome/physiology , Virome/physiology , Animals , COVID-19/complications , Fecal Microbiota Transplantation , Humans , Lectins, C-Type/physiology , SARS-CoV-2 , Th1 Cells/immunology
14.
Annu Rev Nutr ; 40: 323-343, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32680437

ABSTRACT

The human gastrointestinal tract is home to a vibrant, diverse ecosystem of prokaryotic and eukaryotic microorganisms. The gut fungi (mycobiota) have recently risen to prominence due to their ability to modulate host immunity. Colonization of the gut occurs through a combination of vertical transmission from the maternal mycobiota and environmental and dietary exposure. Data from human and animal studies demonstrate that nutrition strongly affects the mycobiota composition and that changes in the fungal communities can aggravate metabolic diseases. The mechanisms pertaining to the mycobiota's influence on host health, pathology, and resident gastrointestinal communities through intrakingdom, transkingdom, and immune cross talk are beginning to come into focus, setting the stage for a new chapter in microbiota-host interactions. Herein, we examine the inception, maturation, and dietary modulation of gastrointestinal and nutritional fungal communities and inspect their impact on metabolic diseases in humans.


Subject(s)
Fungi/physiology , Gastrointestinal Microbiome/physiology , Nutritional Status , Host Microbial Interactions , Humans
15.
Fungal Genet Biol ; 127: 45-49, 2019 06.
Article in English | MEDLINE | ID: mdl-30849443

ABSTRACT

Gut mycobiota dysbiosis can negatively impact the outcome of several diseases of inflammatory origin, suggesting a role of the mycobiota in influencing the host immunity. However, it is unknown whether the gut mycobiota composition can create an immune environment that would influence the immune response to a newly introduced intestinal fungus. Using ITS1 deep sequencing, we evaluated the mycobiome structure of C57BL/6J mice acquired from Jackson (JAX) or bred in a controlled environment at a dedicated room in our own mouse facility (WCM-CE) for several generations. We found that C57BL/6J mice from these segregated mouse colonies harbor dramatically different mycobiota. To assess whether the mycobiota make up can influence immune responses to colonization with a fungus foreign to the murine GI tract, we colonized JAX and WCM-CE mice with the human commensal C. albicans and measured Th17 responses in the gut. We found that independent of mycobiota composition, mice produced strong Th17 responses to gastrointestinal C. albicans colonization. Our data suggest that different mouse colonies can carry dramatically different mycobiota. Nevertheless, strong Th17 responses to a newly introduced opportunistic commensal fungus are potently induced independent of the mycobiota background in this experimental setting.


Subject(s)
Fungi/classification , Gastrointestinal Tract/microbiology , Mycobiome , Symbiosis , Th17 Cells/immunology , Animals , DNA, Intergenic/genetics , DNA, Ribosomal/genetics , Fungi/physiology , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Mice , Mice, Inbred C57BL
16.
Curr Opin Gastroenterol ; 34(6): 392-397, 2018 11.
Article in English | MEDLINE | ID: mdl-30239343

ABSTRACT

PURPOSE OF REVIEW: In this review, we discuss recent advances into delineating the dual role of intestinal phagocytes in health and during intestinal disease. We further discuss the key role of gut-resident macrophages in recognition of bacterial and fungal microbiota in the gut. RECENT FINDINGS: Inflammatory bowel disease (IBD) commonly manifests with pathologic changes in the composition of gut bacterial and fungal microbiota. Intestinal macrophages are key regulators of the balance between tolerogenic immunity and inflammation. Recent studies have highlighted the role of resident intestinal macrophages in the control of commensal fungi and bacteria in the steady state and during dysbiosis. The dual role of these cells in maintaining intestinal homeostasis and responding to microbiota dysbiosis during inflammation is being increasingly studied. SUMMARY: It is becoming increasingly clear that an aberrant proinflammatory response to microbiota by infiltrating monocytes plays a role in the development of intestinal inflammation. Intestinal mononuclear phagocytes with characteristics of macrophages play an important role in limiting fungal and bacterial overgrowth under these conditions, but can be influenced by the inflammatory environment to further propel inflammation. Better understanding of the interaction of intestinal macrophages with host microbiota including commensal fungi and bacteria, provides an opportunity for the development of more targeted therapies for IBD.


Subject(s)
Bacteria/immunology , Fungi/immunology , Gastrointestinal Microbiome/immunology , Inflammatory Bowel Diseases/microbiology , Macrophages/immunology , Dysbiosis/immunology , Dysbiosis/microbiology , Host Microbial Interactions/immunology , Humans , Inflammatory Bowel Diseases/immunology
17.
Cell Host Microbe ; 32(5): 661-675.e10, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657606

ABSTRACT

The intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa. Using genetics, we identified multiple responsible metabolic genes in phylogenetically diverse microbes. By colonizing germ-free mice with the wild-type strain and their isogenic mutant deficient in individual aa-metabolizing genes, we found that these genes regulate the availability of gut and circulatory aa. Notably, microbiota genes for branched-chain amino acids (BCAAs) and tryptophan metabolism indirectly affect host glucose homeostasis via peripheral serotonin. Collectively, at single-gene level, this work characterizes a microbiota-encoded metabolic activity that affects host nutrient homeostasis and provides a roadmap to interrogate microbiota-dependent activity to improve human health.


Subject(s)
Amino Acids, Branched-Chain , Amino Acids , Gastrointestinal Microbiome , Homeostasis , Tryptophan , Animals , Gastrointestinal Microbiome/physiology , Mice , Amino Acids/metabolism , Amino Acids, Branched-Chain/metabolism , Tryptophan/metabolism , Mice, Inbred C57BL , Nutrients/metabolism , Intestines/microbiology , Humans , Metabolomics , Glucose/metabolism , Serotonin/metabolism , Germ-Free Life , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Male
18.
J Exp Med ; 204(10): 2253-7, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17893197

ABSTRACT

Recent work suggests that dendritic cells (DCs) in mucosal tissues are "educated" by intestinal epithelial cells (IECs) to suppress inflammation and promote immunological tolerance. After attack by pathogenic microorganisms, however, "non-educated" DCs are recruited from nearby areas, such as the dome of Peyer's patches (PPs) and the blood, to initiate inflammation and the ensuing immune response to the invader. Differential epithelial cell (EC) responses to commensals and pathogens may control these two tolorogenic and immunogenic functions of DCs.


Subject(s)
Dendritic Cells/immunology , Epithelial Cells/immunology , Intestines/immunology , Yin-Yang , Animals , Humans , Inflammation/immunology , Inflammation/pathology , Intestines/pathology
19.
Science ; 381(6657): 483-484, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37535732

ABSTRACT

Specialized epithelium secretes an antifungal peptide.


Subject(s)
Antifungal Agents , Paneth Cells , Peptide YY , Antifungal Agents/metabolism , Paneth Cells/metabolism , Peptide YY/metabolism , Animals , Mice
20.
bioRxiv ; 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37645947

ABSTRACT

Various bacteria are suggested to contribute to colorectal cancer (CRC) development, including pks+ E. coli which produce the genotoxin colibactin that induces characteristic mutational signatures in host epithelial cells. It remains unclear how the highly unstable colibactin molecule is able to access host epithelial cells and its DNA to cause harm. Using the microbiota-dependent ZEB2-transgenic mouse model of invasive CRC, we found that pks+ E. coli drives CRC exacerbation and tissue invasion in a colibactin-dependent manner. Using isogenic mutant strains, we further demonstrate that CRC exacerbation critically depends on expression of the E. coli type-1 pilus adhesin FimH and the F9-pilus adhesin FmlH. Blocking bacterial adhesion using a pharmacological FimH inhibitor attenuates colibactin-mediated genotoxicity and CRC exacerbation. Together, we show that the oncogenic potential of pks+ E. coli critically depends on bacterial adhesion to host epithelial cells and is critically mediated by specific bacterial adhesins. Adhesin-mediated epithelial binding subsequently allows production of the genotoxin colibactin in close proximity to host epithelial cells, which promotes DNA damage and drives CRC development. These findings present promising therapeutic avenues for the development of anti-adhesive therapies aiming at mitigating colibactin-induced DNA damage and inhibiting the initiation and progression of CRC, particularly in individuals at risk for developing CRC.

SELECTION OF CITATIONS
SEARCH DETAIL