Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 23(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36292950

ABSTRACT

Tropomyosin receptor kinase A (TrkA/NTRK1) is a high-affinity receptor for nerve growth factor (NGF), a potent pain mediator. NGF/TrkA signaling elevates synovial sensory neuronal distributions in the joints and causes osteoarthritis (OA) pain. We investigated the mechanisms of pain transmission as to whether peripheral sensory neurons are linked to the cellular plasticity in the dorsal root ganglia (DRG) and are critical for OA hyperalgesia. Sensory neuron-specific deletion of TrkA was achieved by tamoxifen injection in 4-week-old TrkAfl/fl;NaV1.8CreERT2 (Ntrk1 fl/fl;Scn10aCreERT2) mice. OA was induced by partial medial meniscectomy (PMM) in 12-week-old mice, and OA-pain-related behavior was analyzed for 12 weeks followed by comprehensive histopathological examinations. OA-associated joint pain was markedly improved without cartilage protection in sensory-neuron-specific conditional TrkA knock-out (cKO) mice. Alleviated hyperalgesia was associated with suppression of the NGF/TrkA pathway and reduced angiogenesis in fibroblast-like synovial cells. Elevated pain transmitters in the DRG of OA-induced mice were significantly diminished in sensory-neuron-specific TrkA cKO and global TrkA cKO mice. Spinal glial activity and brain-derived neurotropic factor (BDNF) were significantly increased in OA-induced mice but were substantially eliminated by sensory-neuron-specific deletion. Our results suggest that augmentation of NGF/TrkA signaling in the joint synovium and the peripheral sensory neurons facilitate pro-nociception and centralized pain sensitization.


Subject(s)
Nerve Growth Factor , Osteoarthritis , Mice , Animals , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Receptor, trkA/genetics , Receptor, trkA/metabolism , Tropomyosin/metabolism , Hyperalgesia/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Sensory Receptor Cells/metabolism , Pain/metabolism , Ganglia, Spinal/metabolism , Osteoarthritis/metabolism , Tamoxifen/metabolism
2.
J Cell Physiol ; 235(6): 5305-5317, 2020 06.
Article in English | MEDLINE | ID: mdl-31875985

ABSTRACT

Although degenerative disc disease (DDD) and related low back pain (LBP) are growing public health problems, the underlying disease mechanisms remain unclear. An increase in the vascular endothelial growth factor (VEGF) levels in DDD has been reported. This study aimed to examine the role of VEGF receptors (VEGFRs) in DDD, using a mouse model of DDD. Progressive DDD was induced by anterior stabbing of lumbar intervertebral discs in wild type (WT) and VEGFR-1 tyrosine-kinase deficient mice (vegfr-1TK-/- ). Pain assessments were performed weekly for 12 weeks. Histological and immunohistochemical assessments were made for discs, dorsal root ganglions, and spinal cord. Both vegfr-1TK-/- and WT mice presented with similar pathological changes in discs with an increased expression of inflammatory cytokines and matrix-degrading enzymes. Despite the similar pathological patterns, vegfr-1TK-/- mice showed insensitivity to pain compared with WT mice. This insensitivity to discogenic pain was related to lower levels of pain factors in the discs and peripheral sensory neurons and lower spinal glial activation in the vegfr-1TK- /- mice than in the WT mice. Exogenous stimulation of bovine disc cells with VEGF increased inflammatory and cartilage degrading enzyme. Silencing vegfr-1 by small-interfering-RNA decreased VEGF-induced expression of pain markers, while silencing vegfr-2 decreased VEGF-induced expression of inflammatory and metabolic markers without changing pain markers. This suggests the involvement of VEGFR-1 signaling specifically in pain transmission. Collectively, our results indicate that the VEGF signaling is involved in DDD. Particularly, VEGFR-1 is critical for discogenic LBP transmission independent of the degree of disc pathology.


Subject(s)
Intervertebral Disc/metabolism , Low Back Pain/genetics , Lumbar Vertebrae/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics , Animals , Disease Models, Animal , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Gene Expression Regulation/genetics , Humans , Intervertebral Disc/injuries , Intervertebral Disc/pathology , Low Back Pain/pathology , Lumbar Vertebrae/injuries , Lumbar Vertebrae/pathology , Mice , Pain Measurement , Signal Transduction/genetics
3.
J Biol Chem ; 293(49): 19001-19011, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30327434

ABSTRACT

Ezh2 is a histone methyltransferase that suppresses osteoblast maturation and skeletal development. We evaluated the role of Ezh2 in chondrocyte lineage differentiation and endochondral ossification. Ezh2 was genetically inactivated in the mesenchymal, osteoblastic, and chondrocytic lineages in mice using the Prrx1-Cre, Osx1-Cre, and Col2a1-Cre drivers, respectively. WT and conditional knockout mice were phenotypically assessed by gross morphology, histology, and micro-CT imaging. Ezh2-deficient chondrocytes in micromass culture models were evaluated using RNA-Seq, histologic evaluation, and Western blotting. Aged mice with Ezh2 deficiency were also evaluated for premature development of osteoarthritis using radiographic analysis. Ezh2 deficiency in murine chondrocytes reduced bone density at 4 weeks of age but caused no other gross developmental effects. Knockdown of Ezh2 in chondrocyte micromass cultures resulted in a global reduction in trimethylation of histone 3 lysine 27 (H3K27me3) and altered differentiation in vitro RNA-Seq analysis revealed enrichment of an osteogenic gene expression profile in Ezh2-deficient chondrocytes. Joint development proceeded normally in the absence of Ezh2 in chondrocytes without inducing excessive hypertrophy or premature osteoarthritis in vivo In summary, loss of Ezh2 reduced H3K27me3 levels, increased the expression of osteogenic genes in chondrocytes, and resulted in a transient post-natal bone phenotype. Remarkably, Ezh2 activity is dispensable for normal chondrocyte maturation and endochondral ossification in vivo, even though it appears to have a critical role during early stages of mesenchymal lineage commitment.


Subject(s)
Cartilage/metabolism , Chondrocytes/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Osteogenesis/physiology , Animals , Cell Differentiation/physiology , Chondrogenesis , Gene Knockdown Techniques , Histones/chemistry , Histones/metabolism , Lysine/chemistry , Methylation , Mice , Transcriptome
4.
J Cell Physiol ; 233(10): 6589-6602, 2018 10.
Article in English | MEDLINE | ID: mdl-29150945

ABSTRACT

Discogenic low back pain (DLBP) is extremely common and costly. Effective treatments are lacking due to DLBP's unknown pathogenesis. Currently, there are no in vivo mouse models of DLBP, which restricts research in this field. The aim of this study was to establish a reliable DLBP model in mouse that captures the pathological changes in the disc and allows longitudinal pain testing. The model was generated by puncturing the mouse lumbar discs (L4/5, L5/6, and L6/S1) and removing the nucleus pulposus using a microscalpel under the microscope. Histology, molecular pathways, and pain-related behaviors were examined. Over 12 weeks post-surgery, animals displayed the mechanical, heat, and cold hyperalgesia along with decreased burrowing and rearing. Histology showed progressive disc degeneration with loss of disc height, nucleus pulposus reduction, proteoglycan depletion, and annular fibrotic disorganization. Immunohistochemistry revealed a substantial increase in inflammatory mediators at 2 and 4 weeks. Nerve growth factor was upregulated from 2 weeks to the end of the experiment. Nerve fiber ingrowth was induced in the injured discs after 4 weeks. Disc-puncture also produced an upregulation of neuropeptides in dorsal root ganglia neurons and an activation of glial cells in the spinal cord dorsal horn. These findings indicate that the cellular and structural changes in discs, as well as peripheral and central nervous system plasticity, paralleled persistent, and robust behavioral pain responses. Therefore, this mouse DLBP model could be used to investigate mechanisms underlying discogenic pain, thereby facilitating effective drug screening and development of treatments for DLBP.


Subject(s)
Intervertebral Disc Degeneration/physiopathology , Low Back Pain/physiopathology , Spinal Cord Dorsal Horn/physiopathology , Spinal Puncture , Animals , Central Nervous System/physiopathology , Disease Models, Animal , Ganglia, Spinal/physiopathology , Humans , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/surgery , Low Back Pain/genetics , Low Back Pain/surgery , Mice , Neuroglia/pathology , Neuropeptides/genetics , Nucleus Pulposus/physiopathology , Spinal Cord Dorsal Horn/surgery
5.
Cell Physiol Biochem ; 49(6): 2463-2482, 2018.
Article in English | MEDLINE | ID: mdl-30261504

ABSTRACT

BACKGROUND/AIMS: Intervertebral discs consist of an extracellular matrix (ECM) with a central gelatinous nucleus pulposus (NP) enclosed in an outer layer known as the annulus fibrosus. ECM metabolic disorders result in loss of boundary between the annulus fibrosus and NP, which can lead to intervertebral disc degeneration (IDD). Proinflammatory cytokines, such as interleukin (IL)-1ß, mediate the progression of IDD. Nicotinamide phosphoribosyltransferase (Nampt) catalyzes the first step in the biosynthesis of nicotinamide adenine dinucleotide (NAD) and is known to be induced by IL-1ß. APO866 is an inhibitor of NAD biosynthesis and is involved in autophagy. LC3 (microtubule-associated protein 1 light chain 3) is a key regulator of autophagy and is used as an indicator of increased autophagy. Herein, we investigate the role of APO866 in regulating autophagy in NP cells and IL-1ß mediated NP cell degeneration and apoptosis. METHODS: NP cells were extracted from IDD tissues and cultured in DMEM/F12 medium. Nampt was induced by different concentrations of IL-1ß (0, 0.5, 1, 5, 10 ng/mL) for 24 h or NP cells were treated with 10 ng/mL IL-1ß for 0, 6, 12, 48 h. QRT-PCR and western blots were used to detect Nampt and ECM-related protein expression in NP tissue of patients with IDD and in NP cells. Confocal analysis was used to detect membrane-bound LC3, Aggrecan, and Collagen II. RESULTS: Nampt is expressed in NP tissue at higher levels in severe grades of IDD (Grade IV and V) compared with low grades (Grade II and III). In NP cells, 10 ng/mL IL-1ß induced Nampt expression for 48 h, increased expression of the degradative-associated proteins, ADAMTS4/5 and MMP-3/13, and decreased expression of ECM-related proteins, Aggrecan and Collagen II. However, the Nampt inhibitor APO866 blocked IL-1ß induction, and the knockdown of Nampt expression increased the expression of ECM proteins that were inhibited by IL-1ß. Moreover, evidence provided by the autophagic markers LC3 and Beclin-1 indicated that APO866 induced NP cell autophagy. Furthermore, although APO866 inhibited the downregulated expression of ECM-related proteins by IL-1ß, this function was blocked by autophagy inhibitor, 3-methyladenine. CONCLUSION: APO866 protects NP cells and induces autophagy by inhibiting IL-1ß-induced NP cell degeneration and apoptosis, which may have therapeutic potential in IDD.


Subject(s)
Acrylamides/pharmacology , Autophagy/drug effects , Interleukin-1beta/pharmacology , Intervertebral Disc Degeneration/pathology , Nicotinamide Phosphoribosyltransferase/metabolism , Piperidines/pharmacology , ADAMTS4 Protein/metabolism , Aggrecans/metabolism , Cells, Cultured , Collagen Type II/metabolism , Cytokines/metabolism , Extracellular Matrix Proteins/metabolism , Female , Humans , Intervertebral Disc Degeneration/metabolism , Male , Matrix Metalloproteinase 3/metabolism , Microtubule-Associated Proteins/metabolism , Middle Aged , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/genetics , Nucleus Pulposus/cytology , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , RNA Interference , RNA, Small Interfering/metabolism
6.
Mol Ther ; 25(12): 2676-2688, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-28919376

ABSTRACT

Emerging evidence suggests that dysregulated microRNAs (miRNAs) play a pivotal role in osteoarthritis (OA), but the role of specific miRNAs remains unclear. Accordingly, we identified OA-associated miRNAs and functional validation of results. Here, we demonstrate that miR-218-5p is significantly upregulated in moderate and severe OA and correlates with scores on a modified Mankin scale. Through gain-of-function and loss-of-function studies, miR-218-5p was shown to significantly affect matrix synthesis gene expression and chondrocyte proliferation and apoptosis. Using SW1353 and C28/I2 cells, PIK3C2A mRNA was identified as a target of miR-218-5p. Downregulation of miR-218-5p dramatically promoted expression of PIK3C2A and its downstream target proteins, such as Akt, mTOR, S6, and 4EBP1. More importantly, OA mice exposed to a miR-218-5p inhibitor were protected from cartilage degradation and had reduced proteoglycan loss and reduced loss of articular chondrocyte cellularity compared with control mice. miR-218-5p is a novel inducer of cartilage destruction via modulation of PI3K/Akt/mTOR signaling. Inhibition of endogenous miR-218-5p expression/activity appears to be an attractive approach to OA treatment.


Subject(s)
MicroRNAs , Osteoarthritis/genetics , Aged , Animals , Biomarkers , Case-Control Studies , Cell Proliferation , Chondrocytes/metabolism , Disease Models, Animal , Disease Progression , Down-Regulation , Female , Gene Expression , Gene Expression Profiling , Genes, Reporter , Genetic Therapy , Humans , Male , Mice , Middle Aged , Osteoarthritis/pathology , Osteoarthritis/therapy , Phosphatidylinositol 3-Kinases/genetics , Plasmids/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Reproducibility of Results , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Transfection
7.
Biochem Biophys Res Commun ; 477(4): 723-730, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27363337

ABSTRACT

Biochanin-A, a phytoestrogen derived from herbal plants, protected from the IL-1ß-induced loss of proteoglycans through the suppression of matrix degrading enzymes such as matrix metalloproteinase (MMP)-13, MMP-3, MMP-1, and ADAMTS-5 in primary rat chondrocytes and the knee articular cartilage. It also suppressed the expression of IL-1ß-induced catabolic factors such as nitric oxide synthase 2, cyclooxygenase-2, prostaglandin E2, and inflammatory cytokines. Furthermore, biochanin-A suppressed the IL-1ß-induced phosphorylation of NFκB, and inhibited its nuclear translocation in primary rat chondrocytes. These results indicate that biochanin-A antagonizes the IL-1ß-induced catabolic effects through its anti-inflammatory activity that involves the modulation of NFκB signaling.


Subject(s)
Chondrocytes/immunology , Genistein/administration & dosage , Interleukin-1beta/immunology , NF-kappa B/immunology , Osteoarthritis/drug therapy , Osteoarthritis/immunology , Animals , Anti-Inflammatory Agents/administration & dosage , Cells, Cultured , Chondrocytes/drug effects , Dose-Response Relationship, Drug , Metabolism/drug effects , Rats , Rats, Sprague-Dawley , Signal Transduction/immunology
8.
Ann Rheum Dis ; 75(12): 2133-2141, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26783110

ABSTRACT

OBJECTIVES: A key clinical paradox in osteoarthritis (OA), a prevalent age-related joint disorder characterised by cartilage degeneration and debilitating pain, is that the severity of joint pain does not strictly correlate with radiographic and histological defects in joint tissues. Here, we determined whether protein kinase Cδ (PKCδ), a key mediator of cartilage degeneration, is critical to the mechanism by which OA develops from an asymptomatic joint-degenerative condition to a painful disease. METHODS: OA was induced in 10-week-old PKCδ null (PKCδ-/-) and wild-type mice by destabilisation of the medial meniscus (DMM) followed by comprehensive examination of the histology, molecular pathways and knee-pain-related-behaviours in mice, and comparisons with human biopsies. RESULTS: In the DMM model, the loss of PKCδ expression prevented cartilage degeneration but exacerbated OA-associated hyperalgesia. Cartilage preservation corresponded with reduced levels of inflammatory cytokines and of cartilage-degrading enzymes in the joints of PKCδ-deficient DMM mice. Hyperalgesia was associated with stimulation of nerve growth factor (NGF) by fibroblast-like synovial cells and with increased synovial angiogenesis. Results from tissue specimens of patients with symptomatic OA strikingly resembled our findings from the OA animal model. In PKCδ null mice, increases in sensory neuron distribution in knee OA synovium and activation of the NGF-tropomyosin receptor kinase (TrkA) axis in innervating dorsal root ganglia were highly correlated with knee OA hyperalgesia. CONCLUSIONS: Increased distribution of synovial sensory neurons in the joints, and augmentation of NGF/TrkA signalling, causes OA hyperalgesia independently of cartilage preservation.


Subject(s)
Arthralgia/genetics , Axons/metabolism , Osteoarthritis, Knee/genetics , Protein Kinase C-delta/genetics , Signal Transduction/genetics , Animals , Arthralgia/pathology , Disease Models, Animal , Ganglia, Spinal/metabolism , Knee Joint/pathology , Mice , Mutation , Nerve Growth Factor/metabolism , Osteoarthritis, Knee/complications , Osteoarthritis, Knee/pathology , Receptor, trkA/metabolism , Sensory Receptor Cells/metabolism , Synovial Membrane/metabolism
9.
J Cell Physiol ; 230(11): 2837-47, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25858171

ABSTRACT

We report generation and characterization of pain-related behavior in a minimally invasive facet joint degeneration (FJD) animal model in rats. FJD was produced by a non-open percutaneous puncture-induced injury on the right lumbar FJs at three consecutive levels. Pressure hyperalgesia in the lower back was assessed by measuring the vocalization response to pressure from a force transducer. After hyperalgesia was established, pathological changes in lumbar FJs and alterations of intervertebral foramen size were assessed by histological and imaging analyses. To investigate treatment options for lumber FJ osteoarthritis-induced pain, animals with established hyperalgesia were administered with analgesic drugs, such as morphine, a selective COX-2 inhibitor, a non-steroidal anti-inflammatory drug (NSAID) (ketorolac), or pregabalin. Effects were assessed by behavioral pain responses. One week after percutaneous puncture-induced injury of the lumbar FJs, ipsilateral primary pressure hyperalgesia developed and was maintained for at least 12 weeks without foraminal stenosis. Animals showed decreased spontaneous activity, but no secondary hyperalgesia in the hind paws. Histopathological and microfocus X-ray computed tomography analyses demonstrated that the percutaneous puncture injury resulted in osteoarthritis-like structural changes in the FJs cartilage and subchondral bone. Pressure hyperalgesia was completely reversed by morphine. The administration of celecoxib produced moderate pain reduction with no statistical significance while the administration of ketorolac and pregabalin produced no analgesic effect on FJ osteoarthritis-induced back pain. Our animal model of non-open percutanous puncture-induced injury of the lumbar FJs in rats shows similar characteristics of low back pain produced by human facet arthropathy.


Subject(s)
Low Back Pain/physiopathology , Lumbar Vertebrae/physiopathology , Osteoarthritis, Spine/physiopathology , Pain Measurement , Animals , Celecoxib , Disease Models, Animal , Humans , Low Back Pain/drug therapy , Models, Animal , Pyrazoles/administration & dosage , Rats , Sulfonamides/administration & dosage , Zygapophyseal Joint/physiopathology
10.
J Cell Physiol ; 230(9): 2174-2183, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25655021

ABSTRACT

Circadian rhythm dysfunction is linked to many diseases, yet pathophysiological roles in articular cartilage homeostasis and degenerative joint disease including osteoarthritis (OA) remains to be investigated in vivo. Here, we tested whether environmental or genetic disruption of circadian homeostasis predisposes to OA-like pathological changes. Male mice were examined for circadian locomotor activity upon changes in the light:dark (LD) cycle or genetic disruption of circadian rhythms. Wild-type (WT) mice were maintained on a constant 12 h:12 h LD cycle (12:12 LD) or exposed to weekly 12 h phase shifts. Alternatively, male circadian mutant mice (Clock(Δ19) or Csnk1e(tau) mutants) were compared with age-matched WT littermates that were maintained on a constant 12:12 LD cycle. Disruption of circadian rhythms promoted osteoarthritic changes by suppressing proteoglycan accumulation, upregulating matrix-degrading enzymes and downregulating anabolic mediators in the mouse knee joint. Mechanistically, these effects involved activation of the PKCδ-ERK-RUNX2/NFκB and ß-catenin signaling pathways, stimulation of MMP-13 and ADAMTS-5, as well as suppression of the anabolic mediators SOX9 and TIMP-3 in articular chondrocytes of phase-shifted mice. Genetic disruption of circadian homeostasis does not predispose to OA-like pathological changes in joints. Our results, for the first time, provide compelling in vivo evidence that environmental disruption of circadian rhythms is a risk factor for the development of OA-like pathological changes in the mouse knee joint.


Subject(s)
CLOCK Proteins/genetics , Cartilage, Articular/metabolism , Circadian Rhythm/genetics , Osteoarthritis, Knee/genetics , Animals , Cartilage, Articular/pathology , Circadian Rhythm/physiology , Core Binding Factor Alpha 1 Subunit/biosynthesis , Disease Susceptibility , Environment , Homeostasis/genetics , Humans , Knee Joint/metabolism , Knee Joint/physiopathology , MAP Kinase Signaling System/genetics , Matrix Metalloproteinase 13/biosynthesis , Mice , Motor Activity/genetics , Motor Activity/physiology , Osteoarthritis, Knee/physiopathology
11.
Anesth Analg ; 120(6): 1289-96, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25695673

ABSTRACT

BACKGROUND: Patients and animals with diabetes exhibit enhanced vulnerability to bacterial surgical infections. Despite multiple retrospective studies demonstrating the benefits associated with glycemic control in reducing bacterial infection after cardiac surgery, there are fewer guidelines on the use of glycemic control for noncardiac surgeries. In the current study, we investigated whether long-term (begun 2 weeks before surgery) or immediate (just before surgery) glycemic controls, continued postoperatively, can reduce surgical site infection in type 1 diabetic-induced rats. METHODS: Rats were injected with streptozotocin to induce type 1 diabetes. Four groups of animals underwent surgery and thigh muscle Staphylococcus aureus bacteria challenge (1 × 10 colony forming units) at the time of surgery. Group 1 diabetic rats received insulin treatment just before surgery and continued until the end of study (short-term glycemic control group). Group 2 diabetic rats received insulin treatment 2 weeks before surgery and continued until the end of study (long-term glycemic control). Group 3 diabetic rats received no insulin treatment (no glycemic control group). Group 4 nondiabetic rats served as a healthy control group. Rats were euthanized at 3 or 6 days after surgery. Blood glucose and muscle bacterial burden were measured at 3 or 6 days after surgery. RESULTS: Glycemic control was achieved in both long- and short-term insulin-treated diabetic rats. Compared with untreated diabetic rats, the bacterial burden in muscle was significantly lower in both groups of glycemic controlled diabetic rats at 3 (all P < 0.003) and 6 (all P < 0.0001) days after surgery. CONCLUSIONS: A short-term glycemic control regimen, initiated just before surgery and bacterial exposure, was as effective in reducing surgical site infection as a long-term glycemic control in type 1 diabetic rats. These data suggest that immediately implementing glycemic control in type 1 diabetic surgical patients before undergoing noncardiac surgery may decrease the risk of infection.


Subject(s)
Blood Glucose/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Staphylococcal Infections/prevention & control , Surgical Wound Infection/prevention & control , Animals , Biomarkers/blood , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/complications , Drug Administration Schedule , Male , Muscle, Skeletal/microbiology , Rats, Sprague-Dawley , Staphylococcal Infections/microbiology , Streptozocin , Surgical Wound Infection/microbiology , Time Factors
12.
Biol Pharm Bull ; 38(8): 1199-207, 2015.
Article in English | MEDLINE | ID: mdl-26235583

ABSTRACT

The aim of this study was to examine the anabolic and anticatabolic functions of bavachin in primary rat chondrocytes. With bavachin treatment, chondrocytes survived for 21 d without cell proliferation, and the proteoglycan content and extracellular matrix increased. Short-term monolayer culture of chondrocytes showed that gene induction of both aggrecan and collagen type II, major extracellular matrix components, was significantly upregulated by bavachin. The expression and activities of cartilage-degrading enzymes such as matrix metalloproteinases and a disintegrin and metalloproteinase with thrombospondin motifs were inhibited significantly by bavachin, while tissue inhibitors of metalloprotease were significantly upregulated. Bavachin inhibits the expression of inducible nitric oxide synthase, a representative catabolic factor, and downregulated the expression of nitric oxide, cyclooxygenase-2, and prostaglandin E2 in a dose-dependent manner in chondrocytes. Our results suggest that the bavachin has anabolic and potent anticatabolic biological effects on chondrocytes, which may have considerable promise in treating articular cartilage degeneration in the future.


Subject(s)
Cartilage, Articular/drug effects , Chondrocytes/drug effects , Flavonoids/pharmacology , Osteoarthritis/metabolism , Phytoestrogens/pharmacology , Plant Extracts/pharmacology , Psoralea/chemistry , Animals , Cartilage, Articular/cytology , Cartilage, Articular/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Chondrocytes/metabolism , Collagen Type II/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Dinoprostone/metabolism , Disintegrins/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Flavonoids/therapeutic use , Interleukin-1beta/metabolism , Matrix Metalloproteinases/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Osteoarthritis/drug therapy , Phytoestrogens/therapeutic use , Phytotherapy , Plant Extracts/therapeutic use , Proteoglycans/metabolism , Rats, Sprague-Dawley , Thrombospondins/metabolism
13.
J Biol Chem ; 288(44): 31655-69, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24036113

ABSTRACT

Bovine lactoferricin (LfcinB), a multifunctional peptide, was recently demonstrated to be anti-catabolic and anti-inflammatory in human articular cartilage. LfcinB blocks IL-1-mediated proteoglycan depletion, matrix-degrading enzyme expression, and pro-inflammatory mediator induction. LfcinB selectively activates ERK1/2, p38 (but not JNK), and Akt signaling. However, the relationship between these pathways and LfcinB target genes has never been explored. In this study, we uncovered the remarkable ability of LfcinB in the induction of an anti-inflammatory cytokine, IL-11. LfcinB binds to cell surface heparan sulfate to initiate ERK1/2 signaling and activate AP-1 complexes composed of c-Fos and JunD, which transactivate the IL-11 gene. The induced IL-11 functions as an anti-inflammatory and chondroprotective cytokine in articular chondrocytes. Our data show that IL-11 directly attenuates IL-1-mediated catabolic and inflammatory processes ex vivo and in vitro. Moreover, IL-11 activates STAT3 signaling pathway to critically up-regulate TIMP-1 expression, as a consecutive secondary cellular response after IL-11 induction by LfcinB-ERK-AP-1 axis in human adult articular chondrocytes. The pathological relevance of IL-11 signaling to osteoarthritis is evidenced by significant down-regulation of its cognate receptor expression in osteoarthritic chondrocytes. Together, our results suggest a two-step mechanism, whereby LfcinB induces TIMP-1 through an IL-11-dependent pathway involving transcription factor AP-1 and STAT3.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Chondrocytes/metabolism , Interleukin-11/biosynthesis , Lactoferrin/pharmacology , MAP Kinase Signaling System/drug effects , STAT3 Transcription Factor/metabolism , Up-Regulation/drug effects , Adult , Aged , Animals , Cartilage, Articular , Cattle , Chondrocytes/pathology , Female , Humans , Male , Middle Aged , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Tissue Inhibitor of Metalloproteinase-1/biosynthesis , Transcription Factor AP-1/metabolism
14.
J Biol Chem ; 288(42): 30399-30410, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24005670

ABSTRACT

Abnormal osteoclast formation and osteolysis are the hallmarks of multiple myeloma (MM) bone disease, yet the underlying molecular mechanisms are incompletely understood. Here, we show that the AKT pathway was up-regulated in primary bone marrow monocytes (BMM) from patients with MM, which resulted in sustained high expression of the receptor activator of NF-κB (RANK) in osteoclast precursors. The up-regulation of RANK expression and osteoclast formation in the MM BMM cultures was blocked by AKT inhibition. Conditioned media from MM cell cultures activated AKT and increased RANK expression and osteoclast formation in BMM cultures. Inhibiting AKT in cultured MM cells decreased their growth and ability to promote osteoclast formation. Of clinical significance, systemic administration of the AKT inhibitor LY294002 blocked the formation of tumor tissues in the bone marrow cavity and essentially abolished the MM-induced osteoclast formation and osteolysis in SCID mice. The level of activating transcription factor 4 (ATF4) protein was up-regulated in the BMM cultures from multiple myeloma patients. Adenoviral overexpression of ATF4 activated RANK expression in osteoclast precursors. These results demonstrate a new role of AKT in the MM promotion of osteoclast formation and bone osteolysis through, at least in part, the ATF4-dependent up-regulation of RANK expression in osteoclast precursors.


Subject(s)
Gene Expression Regulation, Neoplastic , Multiple Myeloma/enzymology , Osteoclasts/enzymology , Osteolysis/enzymology , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation , Activating Transcription Factor 4/metabolism , Animals , Chromones/pharmacology , Enzyme Inhibitors/pharmacology , Female , Heterografts , Humans , Male , Mice , Mice, SCID , Morpholines/pharmacology , Multiple Myeloma/pathology , Neoplasm Transplantation , Osteoclasts/pathology , Osteolysis/pathology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Receptor Activator of Nuclear Factor-kappa B/metabolism , Tumor Cells, Cultured
15.
J Cell Biochem ; 115(10): 1816-28, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24905804

ABSTRACT

Improving the effectiveness of adipose-tissue derived human mesenchymal stromal/stem cells (AMSCs) for skeletal therapies requires a detailed characterization of mechanisms supporting cell proliferation and multi-potency. We investigated the molecular phenotype of AMSCs that were either actively proliferating in platelet lysate or in a basal non-proliferative state. Flow cytometry combined with high-throughput RNA sequencing (RNASeq) and RT-qPCR analyses validate that AMSCs express classic mesenchymal cell surface markers (e.g., CD44, CD73/NT5E, CD90/THY1, and CD105/ENG). Expression of CD90 is selectively elevated at confluence. Self-renewing AMSCs express a standard cell cycle program that successively mediates DNA replication, chromatin packaging, cyto-architectural enlargement, and mitotic division. Confluent AMSCs preferentially express genes involved in extracellular matrix (ECM) formation and cellular communication. For example, cell cycle-related biomarkers (e.g., cyclins E2 and B2, transcription factor E2F1) and histone-related genes (e.g., H4, HINFP, NPAT) are elevated in proliferating AMSCs, while ECM genes are strongly upregulated (>10-fold) in quiescent AMSCs. AMSCs also express pluripotency genes (e.g., POU5F1, NANOG, KLF4) and early mesenchymal markers (e.g., NES, ACTA2) consistent with their multipotent phenotype. Strikingly, AMSCs modulate expression of WNT signaling components and switch production of WNT ligands (from WNT5A/WNT5B/WNT7B to WNT2/WNT2B), while upregulating WNT-related genes (WISP2, SFRP2, and SFRP4). Furthermore, post-proliferative AMSCs spontaneously express fibroblastic, osteogenic, chondrogenic, and adipogenic biomarkers when maintained in confluent cultures. Our findings validate the biological properties of self-renewing and multi-potent AMSCs by providing high-resolution quality control data that support their clinical versatility.


Subject(s)
Adipose Tissue/cytology , Chondrogenesis/genetics , Mesenchymal Stem Cells/cytology , Osteogenesis/genetics , Adipogenesis/genetics , Base Sequence , Cell Communication/genetics , Cell Cycle Checkpoints/genetics , Cell Differentiation , Cell Proliferation/genetics , Cell- and Tissue-Based Therapy , DNA Replication/genetics , Extracellular Matrix/genetics , Flow Cytometry , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Kruppel-Like Factor 4 , Membrane Proteins/metabolism , Mitosis/genetics , Sequence Analysis, RNA , Thy-1 Antigens/biosynthesis
16.
Arthritis Rheum ; 65(12): 3107-19, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23982761

ABSTRACT

OBJECTIVE: While transforming growth factor ß (TGFß) signaling plays a critical role in chondrocyte metabolism, the TGFß signaling pathways and target genes involved in cartilage homeostasis and the development of osteoarthritis (OA) remain unclear. Using an in vitro cell culture method and an in vivo mouse genetic approach, we undertook this study to investigate TGFß signaling in chondrocytes and to determine whether Mmp13 and Adamts5 are critical downstream target genes of TGFß signaling. METHODS: TGFß receptor type II (TGFßRII)-conditional knockout (KO) (TGFßRII(Col2ER)) mice were generated by breeding TGFßRII(flox/flox) mice with Col2-CreER-transgenic mice. Histologic, histomorphometric, and gene expression analyses were performed. In vitro TGFß signaling studies were performed using chondrogenic rat chondrosarcoma cells. To determine whether Mmp13 and Adamts5 are critical downstream target genes of TGFß signaling, TGFßRII/matrix metalloproteinase 13 (MMP-13)- and TGFßRII/ADAMTS-5-double-KO mice were generated and analyzed. RESULTS: Inhibition of TGFß signaling (deletion of the Tgfbr2 gene in chondrocytes) resulted in up-regulation of Runx2, Mmp13, and Adamts5 expression in articular cartilage tissue and progressive OA development in TGFßRII(Col2ER) mice. Deletion of the Mmp13 or Adamts5 gene significantly ameliorated the OA-like phenotype induced by the loss of TGFß signaling. Treatment of TGFßRII(Col2ER) mice with an MMP-13 inhibitor also slowed OA progression. CONCLUSION: Mmp13 and Adamts5 are critical downstream target genes involved in the TGFß signaling pathway during the development of OA.


Subject(s)
Cartilage, Articular/metabolism , Chondrocytes/metabolism , Osteoarthritis/genetics , Protein Serine-Threonine Kinases/genetics , Receptors, Transforming Growth Factor beta/genetics , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAMTS5 Protein , Animals , Cartilage, Articular/pathology , Chondrocytes/pathology , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Disease Progression , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Mice , Mice, Knockout , Osteoarthritis/metabolism , Osteoarthritis/pathology , Phenotype , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , Up-Regulation
17.
J Pain ; 25(3): 618-631, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37852405

ABSTRACT

The serotonin transporter (5-hydroxytryptamine transporter [5-HTT], Serotonin Transporter (SERT), SLC6A4) modulates the activity of serotonin via sodium-dependent reuptake. Given the established importance of serotonin in the control of pain, 5-HTT has received much interest in studies of pain states and as a pharmacological target for serotonin reuptake inhibitors (SRIs). Animal models expressing varying levels of 5-HTT activity show marked differences in pain behaviors and analgesic responses, as well as many serotonin-related physiological effects. In humans, functional nucleotide variations in the SLC6A4 gene, which encodes the serotonin transporter 5-HTT, are associated with certain pathologic pain conditions and differences in responses to pharmacological therapy. These findings collectively reflect the importance of 5-HTT in the intricate physiology and management of pain, as well as the scientific and clinical challenges that need to be considered for the optimization of 5-HTT-related analgesic therapies. PERSPECTIVE: The serotonin transporter 5-HTT/SCL6A4 is sensitive to pharmacological SRIs. Experimental studies on the physiological functions of serotonin, as well as genetic mouse models and clinical phenotype/genotype correlations of nucleotide variation in the human 5-HTT/SCL6A4 gene, provide new insights for the use of SRIs in chronic pain management.


Subject(s)
Serotonin Plasma Membrane Transport Proteins , Serotonin , Humans , Mice , Animals , Serotonin Plasma Membrane Transport Proteins/genetics , Selective Serotonin Reuptake Inhibitors/pharmacology , Analgesics/pharmacology , Analgesics/therapeutic use , Pain/drug therapy , Nucleotides
18.
Sci Adv ; 10(7): eadi5501, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354243

ABSTRACT

Osteoarthritis (OA) is characterized by cartilage damage, inflammation, and pain. Vascular endothelial growth factor receptors (VEGFRs) have been associated with OA severity, suggesting that inhibitors targeting these receptors alleviate pain (via VEGFR1) or cartilage degeneration (via VEGFR2). We have developed a nanoparticle-based formulation of pazopanib (Votrient), an FDA-approved anticancer drug that targets both VEGFR1 and VEGFR2 (Nano-PAZII). We demonstrate that a single intraarticular injection of Nano-PAZII can effectively reduce joint pain for a prolonged time without substantial side effects in two different preclinical OA rodent models involving either surgical (upon partial medial meniscectomy) or nonsurgical induction (with monoiodoacetate). The injection of Nano-PAZII blocks VEGFR1 and relieves OA pain by suppressing sensory neuronal ingrowth into the knee synovium and neuronal plasticity in the dorsal root ganglia and spinal cord. Simultaneously, the inhibition of VEGFR2 reduces cartilage degeneration. These findings provide a mechanism-based disease-modifying drug strategy that addresses both pain symptoms and cartilage loss in OA.


Subject(s)
Osteoarthritis , Vascular Endothelial Growth Factor A , Animals , Vascular Endothelial Growth Factor A/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/etiology , Osteoarthritis/metabolism , Pain/drug therapy , Pain/etiology , Knee Joint/metabolism , Arthralgia , Disease Models, Animal
19.
Gene ; 893: 147920, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37890601

ABSTRACT

Pain is the prime symptom of osteoarthritis (OA) that directly affects the quality of life. Protein kinase Cδ (PKCδ/Prkcd) plays a critical role in OA pathogenesis; however, its significance in OA-related pain is not entirely understood. The present study investigated the functional role of PKCδ in OA pain sensation. OA was surgically induced in control (Prkcdfl/fl), global- (Prkcdfl/fl; ROSACreERT2), and sensory neuron-specific conditional knockout (cKO) mice (Prkcdfl/fl; NaV1.8/Scn10aCreERT2) followed by comprehensive analysis of longitudinal behavioral pain, histopathology and immunofluorescence studies. GlobalPrkcd cKO mice prevented cartilage deterioration by inhibiting matrix metalloproteinase-13 (MMP13) in joint tissues but significantly increased OA pain. Sensory neuron-specificdeletion of Prkcd in mice did not protect cartilage from degeneration but worsened OA-associated pain. Exacerbated pain sensitivity observed in global- and sensory neuron-specific cKO of Prkcd was corroborated with markedly increased specific pain mediators in knee synovium and dorsal root ganglia (DRG). These specific pain markers include nerve growth factor (NGF) and vascular endothelial growth factor (VEGF), and their cognate receptors, including tropomyosin receptor kinase A (TrkA) and vascular endothelial growth factor receptor-1 (VEGFR1). The increased levels of NGF/TrkA and VEGF/VEGFR1 were comparable in both global- and sensory neuron-specific cKO groups. These data suggest that the absence of Prkcd gene expression in the sensory neurons is strongly associated with OA hyperalgesia independent of cartilage protection. Thus, inhibition of PKCδ may be beneficial for cartilage homeostasis but could aggravate OA-related pain symptoms.


Subject(s)
Hyperalgesia , Osteoarthritis , Animals , Mice , Disease Models, Animal , Hyperalgesia/genetics , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Osteoarthritis/metabolism , Pain/complications , Pain/genetics , Quality of Life , Vascular Endothelial Growth Factor A/genetics
20.
J Biol Chem ; 287(25): 21450-60, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22556421

ABSTRACT

Bone remodeling is a complex process that must be precisely controlled to maintain a healthy life. We show here that filamin-binding LIM protein 1 (FBLP-1, also known as migfilin), a kindlin- and filamin-binding focal adhesion protein, is essential for proper control of bone remodeling. Genetic inactivation of FBLIM1 (the gene encoding FBLP-1) in mice resulted in a severe osteopenic phenotype. Primary FBLP-1 null bone marrow stromal cells (BMSCs) exhibited significantly reduced extracellular matrix adhesion and migration compared with wild type BMSCs. Loss of FBLP-1 significantly impaired the growth and survival of BMSCs in vitro and decreased the number of osteoblast (OB) progenitors in bone marrow and OB differentiation in vivo. Furthermore, the loss of FBLP-1 caused a dramatic increase of osteoclast (OCL) differentiation in vivo. The level of receptor activator of nuclear factor κB ligand (RANKL), a key regulator of OCL differentiation, was markedly increased in FBLP-1 null BMSCs. The capacity of FBLP-1 null bone marrow monocytes (BMMs) to differentiate into multinucleated OCLs in response to exogenously supplied RANKL, however, was not different from that of WT BMMs. Finally, we show that a loss of FBLP-1 promotes activating phosphorylation of ERK1/2. Inhibition of ERK1/2 activation substantially suppressed the increase of RANKL induced by the loss of FBLP-1. Our results identify FBLP-1 as a key regulator of bone homeostasis and suggest that FBLP-1 functions in this process through modulating both the intrinsic properties of OB/BMSCs (i.e., BMSC-extracellular matrix adhesion and migration, cell growth, survival, and differentiation) and the communication between OB/BMSCs and BMMs (i.e., RANKL expression) that controls osteoclastogenesis.


Subject(s)
Bone Remodeling/physiology , Cell Adhesion Molecules/metabolism , Cell Differentiation/physiology , Cytoskeletal Proteins/metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Adhesion/physiology , Cell Adhesion Molecules/genetics , Cell Movement/physiology , Cytoskeletal Proteins/genetics , MAP Kinase Signaling System/physiology , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Monocytes/cytology , Monocytes/metabolism , Osteoblasts/cytology , Osteoclasts/cytology , Phosphorylation/physiology , Stromal Cells/cytology , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL