Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Immunother Cancer ; 10(7)2022 07.
Article in English | MEDLINE | ID: mdl-35798535

ABSTRACT

Macrophages are main players of the innate immune system. They show great heterogeneity and play diverse functions that include support to development, sustenance of tissue homeostasis and defense against infections. Dysfunctional macrophages have been described in multiple pathologies including cancer. Indeed tumor-associated macrophages (TAMs) are abundant in most tumors and sustain cancer growth, promote invasion and mediate immune evasion. Importantly, lipid metabolism influences macrophage activation and lipid accumulation confers pathogenic features on macrophages. Notably, a subset of lipid-loaded macrophages has been recently identified in many tumor types. Lipid-loaded TAMs support tumor growth and progression and exert immune-suppressive activities. In this review, we describe the role of lipid metabolism in macrophage activation in physiology and pathology and we discuss the impact of lipid accumulation in macrophages in the context of cancer.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Lipids , Macrophages
2.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-34919143

ABSTRACT

Tumor-associated macrophages (TAMs) are correlated with the progression of prostatic adenocarcinoma (PCa). The mechanistic basis of this correlation and therapeutic strategies to target TAMs in PCa remain poorly defined. Here, single-cell RNA sequencing was used to profile the transcriptional landscape of TAMs in human PCa, leading to identification of a subset of macrophages characterized by dysregulation in transcriptional pathways associated with lipid metabolism. This subset of TAMs correlates positively with PCa progression and shorter disease-free survival and is characterized by an accumulation of lipids that is dependent on Marco. Mechanistically, cancer cell-derived IL-1ß enhances Marco expression on macrophages, and reciprocally, cancer cell migration is promoted by CCL6 released by lipid-loaded TAMs. Moreover, administration of a high-fat diet to tumor-bearing mice raises the abundance of lipid-loaded TAMs. Finally, targeting lipid accumulation by Marco blockade hinders tumor growth and invasiveness and improves the efficacy of chemotherapy in models of PCa, pointing to combinatorial strategies that may influence patient outcomes.


Subject(s)
Lipids , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Animals , Cell Plasticity/genetics , Cell Plasticity/immunology , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Gene Expression Profiling , Gene Knockdown Techniques , Heterografts , Humans , Lipid Metabolism , Lipids/chemistry , Male , Metabolic Networks and Pathways , Mice , Prostatic Neoplasms/pathology , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL