Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nature ; 607(7919): 548-554, 2022 07.
Article in English | MEDLINE | ID: mdl-35831497

ABSTRACT

The morphology and functionality of the epithelial lining differ along the intestinal tract, but tissue renewal at all sites is driven by stem cells at the base of crypts1-3. Whether stem cell numbers and behaviour vary at different sites is unknown. Here we show using intravital microscopy that, despite similarities in the number and distribution of proliferative cells with an Lgr5 signature in mice, small intestinal crypts contain twice as many effective stem cells as large intestinal crypts. We find that, although passively displaced by a conveyor-belt-like upward movement, small intestinal cells positioned away from the crypt base can function as long-term effective stem cells owing to Wnt-dependent retrograde cellular movement. By contrast, the near absence of retrograde movement in the large intestine restricts cell repositioning, leading to a reduction in effective stem cell number. Moreover, after suppression of the retrograde movement in the small intestine, the number of effective stem cells is reduced, and the rate of monoclonal conversion of crypts is accelerated. Together, these results show that the number of effective stem cells is determined by active retrograde movement, revealing a new channel of stem cell regulation that can be experimentally and pharmacologically manipulated.


Subject(s)
Cell Count , Cell Movement , Intestines , Stem Cells , Animals , Intestinal Mucosa/cytology , Intestine, Small/cytology , Intestines/cytology , Mice , Receptors, G-Protein-Coupled , Stem Cells/cytology , Wnt Proteins
2.
Nature ; 571(7765): 398-402, 2019 07.
Article in English | MEDLINE | ID: mdl-31292548

ABSTRACT

A decline in stem cell function impairs tissue regeneration during ageing, but the role of the stem-cell-supporting niche in ageing is not well understood. The small intestine is maintained by actively cycling intestinal stem cells that are regulated by the Paneth cell niche1,2. Here we show that the regenerative potential of human and mouse intestinal epithelium diminishes with age owing to defects in both stem cells and their niche. The functional decline was caused by a decrease in stemness-maintaining Wnt signalling due to production of Notum, an extracellular Wnt inhibitor, in aged Paneth cells. Mechanistically, high activity of mammalian target of rapamycin complex 1 (mTORC1) in aged Paneth cells inhibits activity of peroxisome proliferator activated receptor α (PPAR-α)3, and lowered PPAR-α activity increased Notum expression. Genetic targeting of Notum or Wnt supplementation restored function of aged intestinal organoids. Moreover, pharmacological inhibition of Notum in mice enhanced the regenerative capacity of aged stem cells and promoted recovery from chemotherapy-induced damage. Our results reveal a role of the stem cell niche in ageing and demonstrate that targeting of Notum can promote regeneration of aged tissues.


Subject(s)
Aging , Cellular Senescence , Esterases/metabolism , Intestinal Mucosa/pathology , Paneth Cells/metabolism , Regeneration , Aging/physiology , Animals , Cellular Senescence/physiology , Esterases/antagonists & inhibitors , Esterases/biosynthesis , Female , Humans , Intestinal Mucosa/physiology , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , PPAR alpha/metabolism , Paneth Cells/pathology , Receptors, G-Protein-Coupled/metabolism , Stem Cell Niche , Stem Cells/pathology , Wnt Proteins/antagonists & inhibitors , Wnt Signaling Pathway
3.
Development ; 148(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-34128985

ABSTRACT

Epithelial attachment to the basement membrane (BM) is essential for mammary gland development, yet the exact roles of specific BM components remain unclear. Here, we show that Laminin α5 (Lama5) expression specifically in the luminal epithelial cells is necessary for normal mammary gland growth during puberty, and for alveologenesis during pregnancy. Lama5 loss in the keratin 8-expressing cells results in reduced frequency and differentiation of hormone receptor expressing (HR+) luminal cells. Consequently, Wnt4-mediated crosstalk between HR+ luminal cells and basal epithelial cells is compromised during gland remodeling, and results in defective epithelial growth. The effects of Lama5 deletion on gland growth and branching can be rescued by Wnt4 supplementation in the in vitro model of branching morphogenesis. Our results reveal a surprising role for BM-protein expression in the luminal mammary epithelial cells, and highlight the function of Lama5 in mammary gland remodeling and luminal differentiation.


Subject(s)
Cell Differentiation/genetics , Epithelium/metabolism , Laminin/genetics , Mammary Glands, Animal/metabolism , Signal Transduction , Wnt4 Protein/genetics , Animals , Biomarkers , Epithelial Cells , Female , Fluorescent Antibody Technique , Gene Expression Regulation, Developmental , Immunohistochemistry , Laminin/metabolism , Mammary Glands, Animal/embryology , Mice , Models, Biological , Morphogenesis/genetics , Organogenesis/genetics , Wnt4 Protein/metabolism
4.
Cell Mol Gastroenterol Hepatol ; 12(3): 873-889, 2021.
Article in English | MEDLINE | ID: mdl-34058415

ABSTRACT

BACKGROUND & AIMS: Microfold cells (M cells) are immunosurveillance epithelial cells located in the Peyer's patches (PPs) in the intestine and are responsible for monitoring and transcytosis of antigens, microorganisms, and pathogens. Mature M cells use the receptor glycoprotein 2 (GP2) to aid in transcytosis. Recent studies have shown transcription factors, Spi-B and SRY-Box Transcription Factor 8 (Sox8). are necessary for M-cell differentiation, but not sufficient. An exhaustive set of factors sufficient for differentiation and development of a mature GP2+ M cell remains elusive. Our aim was to understand the role of polycomb repressive complex 2 (PRC2) as an epigenetic regulator of M-cell development. Estrogen-related-receptor γ (Esrrg), identified as a PRC2-regulated gene, was studied in depth, in addition to its relationship with Spi-B and Sox8. METHODS: Comparative chromatin immunoprecipitation and global run-on sequencing analysis of mouse intestinal organoids were performed in stem condition, enterocyte conditions, and receptor activator of nuclear factor κ B ligand-induced M-cell condition. Esrrg, which was identified as one of the PRC2-regulated transcription factors, was studied in wild-type mice and knocked out in intestinal organoids using guide RNA's. Sox8 null mice were used to study Esrrg and its relation to Sox8. RESULTS: chromatin immunoprecipitation and global run-on sequencing analysis showed 12 novel PRC2 regulated transcription factors, PRC2-regulated Esrrg is a novel M-cell-specific transcription factor acting on a receptor activator of nuclear factor κB ligand-receptor activator of nuclear factor κB-induced nuclear factor-κB pathway, upstream of Sox8, and necessary but not sufficient for a mature M-cell marker of Gp2 expression. CONCLUSIONS: PRC2 regulates a significant set of genes in M cells including Esrrg, which is critical for M-cell development and differentiation. Loss of Esrrg led to an immature M-cell phenotype lacking in Sox8 and Gp2 expression. Transcript profiling: the data have been deposited in the NCBI Gene Expression Omnibus database (GSE157629).


Subject(s)
Epithelial Cells/metabolism , Gene Expression Regulation , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Peyer's Patches/cytology , Peyer's Patches/metabolism , Polycomb Repressive Complex 2/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Gene Expression Profiling , Intestinal Mucosa/immunology , Mice , NF-kappa B/metabolism , Peyer's Patches/immunology , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Signal Transduction
5.
Nat Commun ; 12(1): 6741, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795242

ABSTRACT

Smooth muscle is an essential component of the intestine, both to maintain its structure and produce peristaltic and segmentation movements. However, very little is known about other putative roles that smooth muscle cells may have. Here, we show that smooth muscle cells may be the dominant suppliers of BMP antagonists, which are niche factors essential for intestinal stem cell maintenance. Furthermore, muscle-derived factors render epithelium reparative and fetal-like, which includes heightened YAP activity. Mechanistically, we find that the membrane-bound matrix metalloproteinase MMP17, which is exclusively expressed by smooth muscle cells, is required for intestinal epithelial repair after inflammation- or irradiation-induced injury. Furthermore, we propose that MMP17 affects intestinal epithelial reprogramming after damage indirectly by cleaving diffusible factor(s) such as the matricellular protein PERIOSTIN. Together, we identify an important signaling axis that establishes a role for smooth muscle cells as modulators of intestinal epithelial regeneration and the intestinal stem cell niche.


Subject(s)
Matrix Metalloproteinase 17/metabolism , Muscle, Smooth/metabolism , Regeneration/physiology , Stem Cell Niche/physiology , Animals , Humans , Intestinal Mucosa/metabolism , Intestines/cytology , Intestines/pathology , Signal Transduction/physiology , Stem Cells/metabolism
6.
Science ; 348(6232): 340-3, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25837514

ABSTRACT

By dividing asymmetrically, stem cells can generate two daughter cells with distinct fates. However, evidence is limited in mammalian systems for the selective apportioning of subcellular contents between daughters. We followed the fates of old and young organelles during the division of human mammary stemlike cells and found that such cells apportion aged mitochondria asymmetrically between daughter cells. Daughter cells that received fewer old mitochondria maintained stem cell traits. Inhibition of mitochondrial fission disrupted both the age-dependent subcellular localization and segregation of mitochondria and caused loss of stem cell properties in the progeny cells. Hence, mechanisms exist for mammalian stemlike cells to asymmetrically sort aged and young mitochondria, and these are important for maintaining stemness properties.


Subject(s)
Cell Division/physiology , Cellular Senescence/physiology , Mitochondria/physiology , Stem Cells/physiology , Stem Cells/ultrastructure , Cell Division/genetics , Cell Line , Cellular Senescence/genetics , Humans , Mitochondria/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL