Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nat Immunol ; 25(6): 1073-1082, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816615

ABSTRACT

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , HIV Envelope Protein gp41 , HIV Infections , HIV-1 , Macaca mulatta , Animals , Humans , HIV Envelope Protein gp41/immunology , HIV Antibodies/immunology , Mice , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV-1/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Vaccination , Broadly Neutralizing Antibodies/immunology , B-Lymphocytes/immunology , Nanoparticles/chemistry , Female , Complementarity Determining Regions/immunology , Epitopes/immunology
3.
Immunity ; 44(1): 21-31, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26777395

ABSTRACT

Numerous studies of the anti-HIV-1 envelope glycoprotein 41 (gp41) broadly neutralizing antibody 4E10 suggest that 4E10 also interacts with membrane lipids, but the antibody regions contacting lipids and its orientation with respect to the viral membrane are unknown. Vaccine immunogens capable of re-eliciting these membrane proximal external region (MPER)-like antibodies may require a lipid component to be successful. We performed a systematic crystallographic study of lipid binding to 4E10 to identify lipids bound by the antibody and the lipid-interacting regions. We identified phosphatidic acid, phosphatidylglycerol, and glycerol phosphate as specific ligands for 4E10 in the crystal structures. 4E10 used its CDRH1 loop to bind the lipid head groups, while its CDRH3 interacted with the hydrophobic lipid tails. Identification of the lipid binding sites on 4E10 may aid design of immunogens for vaccines that include a lipid component in addition to the MPER on gp41 for generation of broadly neutralizing antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Binding Sites, Antibody/immunology , Epitopes, B-Lymphocyte/immunology , HIV Antibodies/immunology , Membrane Lipids/immunology , Broadly Neutralizing Antibodies , Cell Line , Crystallography, X-Ray , Epitopes, B-Lymphocyte/chemistry , Humans , Protein Binding/immunology , Protein Conformation
4.
PLoS Pathog ; 13(2): e1006212, 2017 02.
Article in English | MEDLINE | ID: mdl-28225819

ABSTRACT

Among broadly neutralizing antibodies to HIV, 10E8 exhibits greater neutralizing breadth than most. Consequently, this antibody is the focus of prophylactic/therapeutic development. The 10E8 epitope has been identified as the conserved membrane proximal external region (MPER) of gp41 subunit of the envelope (Env) viral glycoprotein and is a major vaccine target. However, the MPER is proximal to the viral membrane and may be laterally inserted into the membrane in the Env prefusion form. Nevertheless, 10E8 has not been reported to have significant lipid-binding reactivity. Here we report x-ray structures of lipid complexes with 10E8 and a scaffolded MPER construct and mutagenesis studies that provide evidence that the 10E8 epitope is composed of both MPER and lipid. 10E8 engages lipids through a specific lipid head group interaction site and a basic and polar surface on the light chain. In the model that we constructed, the MPER would then be essentially perpendicular to the virion membrane during 10E8 neutralization of HIV-1. As the viral membrane likely also plays a role in selecting for the germline antibody as well as size and residue composition of MPER antibody complementarity determining regions, the identification of lipid interaction sites and the MPER orientation with regard to the viral membrane surface during 10E8 engagement can be of great utility for immunogen and therapeutic design.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , HIV Antibodies/chemistry , HIV Antibodies/immunology , HIV-1/immunology , Antibodies, Blocking/chemistry , Antibodies, Blocking/immunology , HIV Envelope Protein gp41/immunology , Humans , Protein Conformation , Surface Plasmon Resonance , X-Ray Diffraction
5.
ACS Med Chem Lett ; 14(10): 1351-1357, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37849557

ABSTRACT

KRAS G12D mutation has been found in approximately 45% of pancreatic ductal adenocarcinoma (PDAC) cases, making it an attractive therapeutic target. Through structure-based drug design, a series of potent and selective KRAS G12D inhibitors were designed. The lead compound, ERAS-5024, inhibited ERK1/2 phosphorylation and cell proliferation in three-dimensional Cell-Titer Glo assays in AsPC-1 PDAC cells with single-digit nanomolar potency and caused tumor regression in the in vivo efficacy studies. We describe here the details of the design and synthesis program that led to the discovery of ERAS-5024.

6.
Article in English | MEDLINE | ID: mdl-20823515

ABSTRACT

Crystal structures of a binary Mg2+-form Dpo4-DNA complex with 1,N2-etheno-dG in the template strand as well as of ternary Mg2+-form Dpo4-DNA-dCTP/dGTP complexes with 8-oxoG in the template strand have been determined. Comparison of their conformations and active-site geometries with those of the corresponding Ca2+-form complexes revealed that the DNA and polymerase undergo subtle changes as a result of the catalytically more active Mg2+ occupying both the A and B sites.


Subject(s)
Calcium/chemistry , Catalytic Domain , DNA Polymerase beta/chemistry , Magnesium/chemistry , Sulfolobus solfataricus/enzymology , Biocatalysis , Calcium/metabolism , Cations, Divalent/chemistry , Cations, Divalent/metabolism , Crystallography, X-Ray , Magnesium/metabolism , Models, Molecular , Protein Binding , Structural Homology, Protein
7.
Cell Rep ; 31(4): 107583, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32348769

ABSTRACT

Structural and functional studies of HIV envelope glycoprotein (Env) as a transmembrane protein have long been complicated by challenges associated with inherent flexibility of the molecule and the membrane-embedded hydrophobic regions. Here, we present approaches for incorporating full-length, wild-type HIV-1 Env, as well as C-terminally truncated and stabilized versions, into lipid assemblies, providing a modular platform for Env structural studies by single particle electron microscopy. We reconstitute a full-length Env clone into a nanodisc, complex it with a membrane-proximal external region (MPER) targeting antibody 10E8, and structurally define the full quaternary epitope of 10E8 consisting of lipid, MPER, and ectodomain contacts. By aligning this and other Env-MPER antibody complex reconstructions with the lipid bilayer, we observe evidence of Env tilting as part of the neutralization mechanism for MPER-targeting antibodies. We also adapt the platform toward vaccine design purposes by introducing stabilizing mutations that allow purification of unliganded Env with a peptidisc scaffold.


Subject(s)
HIV Envelope Protein gp41/genetics , HIV-1/genetics , Lipid Bilayers/metabolism , Humans
8.
Nat Commun ; 10(1): 5389, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772165

ABSTRACT

The membrane-proximal external region (MPER) of HIV-1 envelope glycoprotein (Env) can be targeted by neutralizing antibodies of exceptional breadth. MPER antibodies usually have long, hydrophobic CDRH3s, lack activity as inferred germline precursors, are often from the minor IgG3 subclass, and some are polyreactive, such as 4E10. Here we describe an MPER broadly neutralizing antibody from the major IgG1 subclass, PGZL1, which shares germline V/D-region genes with 4E10, has a shorter CDRH3, and is less polyreactive. A recombinant sublineage variant pan-neutralizes a 130-isolate panel at 1.4 µg/ml (IC50). Notably, a germline revertant with mature CDR3s neutralizes 12% of viruses and still binds MPER after DJ reversion. Crystal structures of lipid-bound PGZL1 variants and cryo-EM reconstruction of an Env-PGZL1 complex reveal how these antibodies recognize MPER and viral membrane. Discovery of common genetic and structural elements among MPER antibodies from different patients suggests that such antibodies could be elicited using carefully designed immunogens.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Envelope Protein gp41/immunology , HIV-1/drug effects , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/pharmacology , Cell Membrane/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Drug Resistance, Viral/genetics , Epitopes , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV Envelope Protein gp41/metabolism , HIV-1/immunology , Humans , Hydrophobic and Hydrophilic Interactions , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Protein Conformation
9.
Nat Commun ; 9(1): 1956, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769533

ABSTRACT

Furin cleavage of the HIV envelope glycoprotein is an essential step for cell entry that enables formation of well-folded, native-like glycosylated trimers, releases constraints on the fusion peptide, and limits enzymatic processing of the N-glycan shield. Here, we show that a cleavage-independent, stabilized, soluble Env trimer mimic (BG505 NFL.664) exhibits a "closed-form", native-like, prefusion conformation akin to furin-cleaved Env trimers. The crystal structure of BG505 NFL.664 at 3.39 Å resolution with two potent bNAbs also identifies the full epitopes of PGV19 and PGT122 that target the receptor binding site and N332 supersite, respectively. Quantitative site-specific analysis of the glycan shield reveals that native-like glycan processing is maintained despite furin-independent maturation in the secretory pathway. Thus, cleavage-independent NFL Env trimers exhibit quaternary protein and carbohydrate structures similar to the native viral spike that further validate their potential as vaccine immunogen candidates.


Subject(s)
Glycoproteins/chemistry , Protein Multimerization , Protein Structure, Quaternary , env Gene Products, Human Immunodeficiency Virus/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Binding Sites , Crystallography, X-Ray , Epitopes/chemistry , Glycoproteins/metabolism , Glycosylation , HIV Antibodies/chemistry , HIV Antibodies/metabolism , HIV-1/immunology , HIV-1/metabolism , Humans , Models, Molecular , Protein Binding , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism
10.
J Clin Invest ; 127(4): 1491-1504, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28287405

ABSTRACT

Vaccines targeting glycan structures at the surface of pathogenic microbes must overcome the inherent T cell-independent nature of immune responses against glycans. Carbohydrate conjugate vaccines achieve this by coupling bacterial polysaccharides to a carrier protein that recruits heterologous CD4 T cells to help B cell maturation. Yet they most often produce low- to medium-affinity immune responses of limited duration in immunologically fit individuals and disappointing results in the elderly and immunocompromised patients. Here, we hypothesized that these limitations result from suboptimal T cell help. To produce the next generation of more efficacious conjugate vaccines, we have explored a synthetic design aimed at focusing both B cell and T cell recognition to a single short glycan displayed at the surface of a virus-like particle. We tested and established the proof of concept of this approach for 2 serotypes of Streptococcus pneumoniae. In both cases, these vaccines elicited serotype-specific, protective, and long-lasting IgG antibodies of nanomolar affinity against the target glycans in mice. We further identified a requirement for CD4 T cells in the anti-glycan antibody response. Our findings establish the design principles for improved glycan conjugate vaccines. We surmise that the same approach can be used for any microbial glycan of interest.


Subject(s)
Antibodies, Bacterial/blood , Antibody Affinity , CD4-Positive T-Lymphocytes/immunology , Pneumococcal Infections/immunology , Polysaccharides, Bacterial/immunology , Adult , Amino Acid Sequence , Animals , Antibodies, Bacterial/chemistry , B-Lymphocytes/immunology , Bacterial Proteins/immunology , Child , Crystallography, X-Ray , Female , Glycopeptides/immunology , Humans , Hybridomas , Immunoglobulin G/blood , Male , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Models, Molecular , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/chemistry , Pneumococcal Vaccines/immunology , Polysaccharides, Bacterial/chemistry , Protein Binding , Streptococcus pneumoniae/immunology , Vaccination , Vaccine Potency
11.
J Mol Biol ; 326(3): 859-73, 2003 Feb 21.
Article in English | MEDLINE | ID: mdl-12581646

ABSTRACT

The three-dimensional crystal structure of the (R207S, R292S) mutant of malate dehydrogenase from Haloarcula marismortui was solved at 1.95A resolution in order to determine the role of salt bridges and solvent ions in halophilic adaptation and quaternary structure stability. The mutations, located at the dimer-dimer interface, disrupt two inter-dimeric salt bridge clusters that are essential for wild-type tetramer stabilisation. Previous experiments in solution, performed on the double mutant, had shown a tetrameric structure in 4M NaCl, which dissociated into active dimers in 2M NaCl. In order to establish if the active dimeric form is a product of the mutation, or if it also exists in the wild-type protein, complementary studies were performed on the wild-type enzyme by analytical centrifugation and small angle neutron scattering experiments. They showed the existence of active dimers in NaF, KF, Na(2)SO(4), even in the absence of NADH, and in the presence of NADH at concentrations of NaCl below 0.3M. The crystal structure shows a tetramer that, in the absence of the salt bridge clusters, appears to be stabilized by a network of ordered water molecules and by Cl(-) binding at the dimer-dimer interface. The double mutant and wild-type dimer folds are essentially identical (the r.m.s. deviation between equivalent C(alpha) positions is 0.39A). Chloride ions are also observed at the monomer-monomer interfaces of the mutant, contributing to the stability of each dimer against low salt dissociation. Our results support the hypothesis that extensive binding of water and salt is an important feature of adaptation to a halophilic environment.


Subject(s)
Haloarcula marismortui/enzymology , Malate Dehydrogenase/chemistry , Solvents/chemistry , Biopolymers , Crystallography, X-Ray , Dimerization , Malate Dehydrogenase/metabolism , Models, Molecular , Protein Binding , Protein Conformation
12.
J Mol Biol ; 335(1): 343-56, 2004 Jan 02.
Article in English | MEDLINE | ID: mdl-14659762

ABSTRACT

The crystal structure of malate dehydrogenase from the hyperthermophilic archaeon Archeoglobus fulgidus, in complex with its cofactor NAD, was solved at 2.9A resolution. The crystal structure shows a compact homodimer with one coenzyme bound per subunit. The substrate binding site is occupied by a sulphate ion. In order to gain insight into adaptation mechanisms, which allow the protein to be stable and active at high temperatures, the 3D structure was compared to those of several thermostable and hyperthermostable homologues, and to halophilic malate dehydrogenase. The hyperthermostable A. fulgidus MalDH protein displays a reduction of the solvent-exposed surface, an optimised compact hydrophobic core, a high number of hydrogen bonds, and includes a large number of ion pairs at the protein surface. These features occur concomitantly with a reduced number of residues in the protein subunit, due to several deletions in loop regions. The loops are further stiffened by ion pair links with secondary structure elements. A. fulgidus malate dehydrogenase is the only dimeric protein known to date that belongs to the [LDH-like] MalDH family. All the other known members of this family are homo-tetramers. The crystal structures revealed that the association of the dimers to form tetramers is prevented by several deletions, taking place at the level of two loops that are known to be essential for the tetramerisation process within the LDH and [LDH-like] MalDH enzymes.


Subject(s)
Archaeoglobus fulgidus/enzymology , Malate Dehydrogenase/chemistry , Crystallography, X-Ray , Dimerization , Enzyme Stability , Molecular Structure , NAD/chemistry , Protein Conformation , Structural Homology, Protein , Temperature
13.
Nat Struct Mol Biol ; 21(12): 1058-67, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25420104

ABSTRACT

Hydrocarbon stapling can restore bioactive α-helical structure to natural peptides, yielding research tools and prototype therapeutics to dissect and target protein interactions. Here we explore the capacity of peptide stapling to generate high-fidelity, protease-resistant mimics of antigenic structures for vaccine development. HIV-1 has been refractory to vaccine technologies thus far, although select human antibodies can broadly neutralize HIV-1 by targeting sequences of the gp41 juxtamembrane fusion apparatus. To develop candidate HIV-1 immunogens, we generated and characterized stabilized α-helices of the membrane-proximal external region (SAH-MPER) of gp41. SAH-MPER peptides were remarkably protease resistant and bound to the broadly neutralizing 4E10 and 10E8 antibodies with high affinity, recapitulating the structure of the MPER epitope when differentially engaged by the two anti-HIV Fabs. Thus, stapled peptides may provide a new opportunity to develop chemically stabilized antigens for vaccination.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp41/immunology , HIV Infections/virology , HIV-1/immunology , Peptides/immunology , Amino Acid Sequence , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Broadly Neutralizing Antibodies , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , HIV Antibodies/chemistry , HIV Envelope Protein gp41/chemistry , HIV Infections/immunology , HIV-1/chemistry , Humans , Models, Molecular , Molecular Sequence Data , Peptides/chemistry
14.
J Biol Chem ; 284(33): 22467-22480, 2009 Aug 14.
Article in English | MEDLINE | ID: mdl-19542228

ABSTRACT

Human polymerase kappa (hPol kappa) is one of four eukaryotic Y-class DNA polymerases and may be an important element in the cellular response to polycyclic aromatic hydrocarbons such as benzo[a]pyrene, which can lead to reactive oxygenated metabolite-mediated oxidative stress. Here, we present a detailed analysis of the activity and specificity of hPol kappa bypass opposite the major oxidative adduct 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG). Unlike its archaeal homolog Dpo4, hPol kappa bypasses this lesion in an error-prone fashion by inserting mainly dATP. Analysis of transient-state kinetics shows diminished "bursts" for dATP:8-oxoG and dCTP:8-oxoG incorporation, indicative of non-productive complex formation, but dATP:8-oxoG insertion events that do occur are 2-fold more efficient than dCTP:G insertion events. Crystal structures of ternary hPol kappa complexes with adducted template-primer DNA reveal non-productive (dGTP and dATP) alignments of incoming nucleotide and 8-oxoG. Structural limitations placed upon the hPol kappa by interactions between the N-clasp and finger domains combined with stabilization of the syn-oriented template 8-oxoG through the side chain of Met-135 both appear to contribute to error-prone bypass. Mutating Leu-508 in the little finger domain of hPol kappa to lysine modulates the insertion opposite 8-oxoG toward more accurate bypass, similar to previous findings with Dpo4. Our structural and activity data provide insight into important mechanistic aspects of error-prone bypass of 8-oxoG by hPol kappa compared with accurate and efficient bypass of the lesion by Dpo4 and polymerase eta.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/physiology , Deoxyguanosine/analogs & derivatives , 8-Hydroxy-2'-Deoxyguanosine , Base Sequence , Catalysis , Deoxyguanosine/chemistry , Fungal Proteins/metabolism , Humans , Kinetics , Models, Biological , Molecular Conformation , Molecular Sequence Data , Mutation , Protein Structure, Tertiary , Sulfolobus , X-Ray Diffraction
15.
J Biol Chem ; 282(2): 1456-67, 2007 Jan 12.
Article in English | MEDLINE | ID: mdl-17105728

ABSTRACT

We examined the effect of a single O6-methylguanine (O6-MeG) template residue on catalysis by a model Y family polymerase, Dpo4 from Sulfolobus solfataricus. Mass spectral analysis of Dpo4-catalyzed extension products revealed that the enzyme accurately bypasses O6-MeG, with C being the major product (approximately 70%) and T or A being the minor species (approximately 20% or approximately 10%, respectively), consistent with steady-state kinetic parameters. Transient-state kinetic experiments revealed that kpol, the maximum forward rate constant describing polymerization, for dCTP incorporation opposite O6-MeG was approximately 6-fold slower than observed for unmodified G, and no measurable product was observed for dTTP incorporation in the pre-steady state. The lack of any structural information regarding how O6-MeG paired in a polymerase active site led us to perform x-ray crystallographic studies, which show that "wobble" pairing occurs between C and O6-MeG. A structure containing T opposite O6-MeG was solved, but much of the ribose and pyrimidine base density was disordered, in accordance with a much higher Km,dTTP that drives the difference in efficiency between C and T incorporation. The more stabilized C:O6-MeG pairing reinforces the importance of hydrogen bonding with respect to nucleotide selection within a geometrically tolerant polymerase active site.


Subject(s)
Cytosine/metabolism , DNA Polymerase beta/chemistry , DNA Polymerase beta/metabolism , Guanine/analogs & derivatives , Models, Chemical , Sulfolobus solfataricus/enzymology , Binding Sites , Catalysis , Crystallography, X-Ray , Cytosine/chemistry , Guanine/chemistry , Guanine/metabolism , Kinetics , Protein Structure, Tertiary , Sulfolobus solfataricus/genetics
16.
J Biol Chem ; 282(27): 19831-43, 2007 Jul 06.
Article in English | MEDLINE | ID: mdl-17468100

ABSTRACT

Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) has been shown to catalyze bypass of 7,8-dihydro-8-oxodeoxyguanosine (8-oxoG) in a highly efficient and relatively accurate manner. Crystal structures have revealed a potential role for Arg(332) in stabilizing the anti conformation of the 8-oxoG template base by means of a hydrogen bond or ion-dipole pair, which results in an increased enzymatic efficiency for dCTP insertion and makes formation of a Hoogsteen pair between 8-oxoG and dATP less favorable. Site-directed mutagenesis was used to replace Arg(332) with Ala, Glu, Leu, or His in order to probe the importance of Arg(332) in accurate and efficient bypass of 8-oxoG. The double mutant Ala(331)Ala(332) was also prepared to address the contribution of Arg(331). Transientstate kinetic results suggest that Glu(332) retains fidelity against bypass of 8-oxoG that is similar to wild type Dpo4, a result that was confirmed by tandem mass spectrometric analysis of full-length extension products. A crystal structure of the Dpo4 Glu(332) mutant and 8-oxoG:C pair revealed water-mediated hydrogen bonds between Glu(332) and the O-8 atom of 8-oxoG. The space normally occupied by Arg(332) side chain is empty in the crystal structures of the Ala(332) mutant. Two other crystal structures show that a Hoogsteen base pair is formed between 8-oxoG and A in the active site of both Glu(332) and Ala(332) mutants. These results support the view that a bond between Arg(332) and 8-oxoG plays a role in determining the fidelity and efficiency of Dpo4-catalyzed bypass of the lesion.


Subject(s)
Archaeal Proteins/chemistry , DNA Polymerase beta/chemistry , DNA, Archaeal/chemistry , Deoxyguanosine/analogs & derivatives , Sulfolobus solfataricus/enzymology , 8-Hydroxy-2'-Deoxyguanosine , Amino Acid Substitution , Archaeal Proteins/metabolism , Crystallography, X-Ray , DNA Polymerase beta/genetics , DNA, Archaeal/genetics , Deoxyguanosine/chemistry , Hydrogen Bonding , Mutation, Missense , Protein Structure, Tertiary/genetics , Sulfolobus solfataricus/genetics
17.
J Biol Chem ; 282(50): 36421-33, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-17951245

ABSTRACT

The 2,4-difluorotoluene (DFT) analog of thymine has been used extensively to probe the relative importance of shape and hydrogen bonding for correct nucleotide insertion by DNA polymerases. As far as high fidelity (A-class) polymerases are concerned, shape is considered by some as key to incorporation of A(T) opposite T(A) and G(C) opposite C(G). We have carried out a detailed kinetic analysis of in vitro primer extension opposite DFT-containing templates by the trans-lesion (Y-class) DNA polymerase Dpo4 from Sulfolobus solfataricus. Although full-length product formation was observed, steady-state kinetic data show that dATP insertion opposite DFT is greatly inhibited relative to insertion opposite T (approximately 5,000-fold). No products were observed in the pre-steady-state. Furthermore, it is noteworthy that Dpo4 strongly prefers dATP opposite DFT over dGTP (approximately 200-fold) and that the polymerase is able to extend an A:DFT but not a G:DFT pair. We present crystal structures of Dpo4 in complex with DNA duplexes containing the DFT analog, the first for any DNA polymerase. In the structures, template-DFT is either positioned opposite primer-A or -G at the -1 site or is unopposed by a primer base and followed by a dGTP:A mismatch pair at the active site, representative of a -1 frameshift. The three structures provide insight into the discrimination by Dpo4 between dATP and dGTP opposite DFT and its inability to extend beyond a G:DFT pair. Although hydrogen bonding is clearly important for error-free replication by this Y-class DNA polymerase, our work demonstrates that Dpo4 also relies on shape and electrostatics to distinguish between correct and incorrect incoming nucleotide.


Subject(s)
Bacterial Proteins/chemistry , DNA Polymerase beta/chemistry , DNA, Bacterial/chemistry , Sulfolobus solfataricus/enzymology , Toluene/analogs & derivatives , Bacterial Proteins/metabolism , Crystallography, X-Ray , DNA Polymerase beta/metabolism , DNA, Bacterial/biosynthesis , Hydrophobic and Hydrophilic Interactions , Kinetics , Nucleotides/chemistry , Nucleotides/metabolism , Protein Structure, Tertiary/physiology , Structure-Activity Relationship , Thymine/chemistry , Thymine/metabolism , Toluene/chemistry , Toluene/metabolism
18.
Biochemistry ; 45(19): 5949-56, 2006 May 16.
Article in English | MEDLINE | ID: mdl-16681366

ABSTRACT

Y-Family DNA polymerase IV (Dpo4) from Sulfolobus solfataricus serves as a model system for eukaryotic translesion polymerases, and three-dimensional structures of its complexes with native and adducted DNA have been analyzed in considerable detail. Dpo4 lacks a proofreading exonuclease activity common in replicative polymerases but uses pyrophosphorolysis to reduce the likelihood of incorporation of an incorrect base. Mg(2+) is a cofactor for both the polymerase and pyrophosphorolysis activities. Despite the fact that all crystal structures of Dpo4 have been obtained in the presence of Ca(2+), the consequences of replacing Mg(2+) with Ca(2+) for Dpo4 activity have not been investigated to date. We show here that Ca(2+) (but not Ba(2+), Co(2+), Cu(2+), Ni(2+), or Zn(2+)) is a cofactor for Dpo4-catalyzed polymerization with both native and 8-oxoG-containing DNA templates. Both dNTP and ddNTP are substrates of the polymerase in the presence of either Mg(2+) or Ca(2+). Conversely, no pyrophosphorolysis occurs in the presence of Ca(2+), although the positions of the two catalytic metal ions at the active site appear to be very similar in mixed Mg(2+)/Ca(2+)- and Ca(2+)-form Dpo4 crystals.


Subject(s)
Biopolymers/metabolism , Calcium/metabolism , DNA-Directed DNA Polymerase/metabolism , Diphosphates/metabolism , Sulfolobus solfataricus/metabolism , Base Sequence , Cations, Divalent/metabolism , DNA Primers , Models, Molecular
19.
J Biol Chem ; 281(4): 2358-72, 2006 Jan 27.
Article in English | MEDLINE | ID: mdl-16306039

ABSTRACT

DNA polymerases insert dATP opposite the oxidative damage product 7,8-dihydro-8-oxodeoxyguanosine (8-oxoG) instead of dCTP, to the extent of >90% with some polymerases. Steady-state kinetics with the Y-family Sulfolobus solfataricus DNA polymerase IV (Dpo4) showed 90-fold higher incorporation efficiency of dCTP > dATP opposite 8-oxoG and 4-fold higher efficiency of extension beyond an 8-oxoG:C pair than an 8-oxoG:A pair. The catalytic efficiency for these events (with dCTP or C) was similar for G and 8-oxoG templates. Mass spectral analysis of extended DNA primers showed >/=95% incorporation of dCTP > dATP opposite 8-oxoG. Pre-steady-state kinetics showed faster rates of dCTP incorporation opposite 8-oxoG than G. The measured K(d)(,dCTP) was 15-fold lower for an oligonucleotide containing 8-oxoG than with G. Extension beyond an 8-oxoG:C pair was similar to G:C and faster than for an 8-oxoG:A pair, in contrast to other polymerases. The E(a) for dCTP insertion opposite 8-oxoG was lower than for opposite G. Crystal structures of Dpo4 complexes with oligonucleotides were solved with C, A, and G nucleoside triphosphates placed opposite 8-oxoG. With ddCTP, dCTP, and dATP the phosphodiester bonds were formed even in the presence of Ca(2+). The 8-oxoG:C pair showed classic Watson-Crick geometry; the 8-oxoG:A pair was in the syn:anti configuration, with the A hybridized in a Hoogsteen pair with 8-oxoG. With dGTP placed opposite 8-oxoG, pairing was not to the 8-oxoG but to the 5' C (and in classic Watson-Crick geometry), consistent with the low frequency of this frameshift event observed in the catalytic assays.


Subject(s)
DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/physiology , Deoxycytosine Nucleotides/chemistry , Deoxyguanosine/analogs & derivatives , Sulfolobus solfataricus/enzymology , 8-Hydroxy-2'-Deoxyguanosine , Base Sequence , Chromatography, Liquid , DNA/chemistry , DNA Primers/chemistry , Deoxyguanosine/chemistry , Dose-Response Relationship, Drug , Escherichia coli/metabolism , Frameshift Mutation , Kinetics , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Protein Binding , Time Factors , X-Ray Diffraction
20.
J Biol Chem ; 280(33): 29750-64, 2005 Aug 19.
Article in English | MEDLINE | ID: mdl-15965231

ABSTRACT

1,N(2)-Etheno(epsilon)guanine is a mutagenic DNA lesion derived from lipid oxidation products and also from some chemical carcinogens. Gel electrophoretic analysis of the products of primer extension by Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) indicated preferential incorporation of A opposite 3'-(1,N(2)-epsilon-G)TACT-5', among the four dNTPs tested individually. With the template 3'-(1,N(2)-epsilon-G)CACT-5', both G and A were incorporated. When primer extension was done in the presence of a mixture of all four dNTPs, high pressure liquid chromatography-mass spectrometry analysis of the products indicated that (opposite 3'-(1,N(2)-epsilon-G)CACT-5') the major product was 5'-GTGA-3' and the minor product was 5'-AGTGA-3'. With the template 3'-(1,N(2)-epsilon-G)TACT-5', the following four products were identified by high pressure liquid chromatography-mass spectrometry: 5'-AATGA-3', 5'-ATTGA-3', 5'-ATGA-3', and 5'-TGA-3'. An x-ray crystal structure of Dpo4 was solved (2.1 A) with a primer-template and A placed in the primer to be opposite the 1,N(2)-epsilon-G in the template 3'-(1,N(2)-epsilon-G)TACT 5'. The added A in the primer was paired across the template T with classic Watson-Crick geometry. Similar structures were observed in a ternary Dpo4-DNA-dATP complex and a ternary Dpo4-DNA-ddATP complex, with d(d)ATP opposite the template T. A similar structure was observed with a ddGTP adjacent to the primer and opposite the C next to 1,N(2)-epsilon-G in 3'-(1,N(2)-epsilon-G)CACT-5'. We concluded that Dpo4 uses several mechanisms, including A incorporation opposite 1,N(2)-epsilon-G and also a variation of dNTP-stabilized misalignment, to generate both base pair and frameshift mutations.


Subject(s)
DNA Adducts/chemistry , DNA Polymerase beta/chemistry , Sulfolobus solfataricus/enzymology , Binding Sites , Crystallography, X-Ray , DNA Polymerase beta/physiology , DNA Primers/metabolism , Frameshift Mutation , Guanine/metabolism , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL