Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Cell ; 181(5): 1176-1187.e16, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32437660

ABSTRACT

Dysfunctional mitochondria accumulate in many human diseases. Accordingly, mitophagy, which removes these mitochondria through lysosomal degradation, is attracting broad attention. Due to uncertainties in the operational principles of conventional mitophagy probes, however, the specificity and quantitativeness of their readouts are disputable. Thorough investigation of the behaviors and fates of fluorescent proteins inside and outside lysosomes enabled us to develop an indicator for mitophagy, mito-SRAI. Through strict control of its mitochondrial targeting, we were able to monitor mitophagy in fixed biological samples more reproducibly than before. Large-scale image-based high-throughput screening led to the discovery of a hit compound that induces selective mitophagy of damaged mitochondria. In a mouse model of Parkinsons disease, we found that dopaminergic neurons selectively failed to execute mitophagy that promoted their survival within lesions. These results show that mito-SRAI is an essential tool for quantitative studies of mitochondrial quality control.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Lysosomes/metabolism , Mitophagy/physiology , Animals , Autophagy/physiology , Fluorescent Antibody Technique/methods , Fluorescent Dyes/chemistry , Humans , Lysosomes/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitophagy/genetics
2.
Nature ; 629(8011): 370-375, 2024 May.
Article in English | MEDLINE | ID: mdl-38600390

ABSTRACT

Roads are expanding at the fastest pace in human history. This is the case especially in biodiversity-rich tropical nations, where roads can result in forest loss and fragmentation, wildfires, illicit land invasions and negative societal effects1-5. Many roads are being constructed illegally or informally and do not appear on any existing road map6-10; the toll of such 'ghost roads' on ecosystems is poorly understood. Here we use around 7,000 h of effort by trained volunteers to map ghost roads across the tropical Asia-Pacific region, sampling 1.42 million plots, each 1 km2 in area. Our intensive sampling revealed a total of 1.37 million km of roads in our plots-from 3.0 to 6.6 times more roads than were found in leading datasets of roads globally. Across our study area, road building almost always preceded local forest loss, and road density was by far the strongest correlate11 of deforestation out of 38 potential biophysical and socioeconomic covariates. The relationship between road density and forest loss was nonlinear, with deforestation peaking soon after roads penetrate a landscape and then declining as roads multiply and remaining accessible forests largely disappear. Notably, after controlling for lower road density inside protected areas, we found that protected areas had only modest additional effects on preventing forest loss, implying that their most vital conservation function is limiting roads and road-related environmental disruption. Collectively, our findings suggest that burgeoning, poorly studied ghost roads are among the gravest of all direct threats to tropical forests.


Subject(s)
Automobiles , Conservation of Natural Resources , Forestry , Forests , Trees , Tropical Climate , Asia , Conservation of Natural Resources/statistics & numerical data , Conservation of Natural Resources/trends , Trees/growth & development , Datasets as Topic , Forestry/methods , Forestry/statistics & numerical data , Forestry/trends
4.
Hum Mol Genet ; 30(18): 1693-1710, 2021 08 28.
Article in English | MEDLINE | ID: mdl-33890983

ABSTRACT

Type 2 diabetes mellitus (T2DM) has long been considered a risk factor for Alzheimer's disease (AD). However, the molecular links between T2DM and AD remain obscure. Here, we reported that serum-/glucocorticoid-regulated kinase 1 (SGK1) is activated by administering a chronic high-fat diet (HFD), which increases the risk of T2DM, and thus promotes Tau pathology via the phosphorylation of tau at Ser214 and the activation of a key tau kinase, namely, GSK-3ß, forming SGK1-GSK-3ß-tau complex. SGK1 was activated under conditions of elevated glucocorticoid and hyperglycemia associated with HFD, but not of fatty acid-mediated insulin resistance. Elevated expression of SGK1 in the mouse hippocampus led to neurodegeneration and impairments in learning and memory. Upregulation and activation of SGK1, SGK1-GSK-3ß-tau complex were also observed in the hippocampi of AD cases. Our results suggest that SGK1 is a key modifier of tau pathology in AD, linking AD to corticosteroid effects and T2DM.


Subject(s)
Alzheimer Disease/metabolism , Diet, High-Fat/adverse effects , Immediate-Early Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Enzyme Activation/genetics , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Immediate-Early Proteins/genetics , Mice , Mice, Transgenic , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Serine-Threonine Kinases/genetics , tau Proteins/genetics
5.
Oral Dis ; 29(4): 1622-1631, 2023 May.
Article in English | MEDLINE | ID: mdl-35189017

ABSTRACT

OBJECTIVES: The ciliopathies are a wide spectrum of human diseases, which are caused by perturbations in the function of primary cilia. Tooth enamel anomalies are often seen in ciliopathy patients; however, the role of primary cilia in enamel formation remains unclear. MATERIALS AND METHODS: We examined mice with epithelial conditional deletion of the ciliary protein, Ift88, (Ift88fl / fl ;K14Cre). RESULTS: Ift88fl / fl ;K14Cre mice showed premature abrasion in molars. A pattern of enamel rods which is determined at secretory stage, was disorganized in Ift88 mutant molars. Many amelogenesis-related molecules expressing at the secretory stage, including amelogenin and ameloblastin, enamelin, showed significant downregulation in Ift88 mutant molar tooth germs. Shh signaling is essential for amelogenesis, which was found to be downregulated in Ift88 mutant molar at the secretory stage. Application of Shh signaling agonist at the secretory stage partially rescued enamel anomalies in Ift88 mutant mice. CONCLUSION: Findings in the present study indicate that the function of the primary cilia via Ift88 is critical for the secretory stage of amelogenesis through involving Shh signaling.


Subject(s)
Dental Enamel Proteins , Dental Enamel , Mice , Animals , Humans , Amelogenin/genetics , Amelogenin/metabolism , Dental Enamel Proteins/genetics , Dental Enamel Proteins/metabolism , Amelogenesis/genetics , Tumor Suppressor Proteins , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism
6.
Oral Dis ; 28(1): 150-163, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33200485

ABSTRACT

OBJECTIVE: Double-strand (ds) DNA-enveloped viruses can cause oral infection. Our aim is to investigate whether oral mucosal cells participate in immune response against cytosolic dsDNA invasion. METHODS: We examined the response to transfected herpes simplex virus (HSV) dsDNA via intracellular receptors in oral keratinocytes (RT7) and fibroblasts (GT1), and the effect of TNF-α on those responses. RESULTS: Transfected dsDNA increased CXCL10 expression via NF-κB activation in both cell types, while those responses were inhibited by knockdown of RIG-I, an RNA sensor. Although IFI16, a DNA sensor, was expressed in the nuclei of both types, its knockdown decreased transfected dsDNA-induced CXCL10 expression in GT1 but not RT7 cells. IFI16 in GT1 cells was translocated into cytoplasm from nuclei, which was attributed to immune response to cytosolic dsDNA. TNF-α enhanced transfected dsDNA-induced CXCL10, and knockdown of IFI16 decreased TNF-α and dsDNA-driven CXCL10 expression in both RT7 and GT1 cells. Finally, the combination of TNF-α and transfected dsDNA resulted in translocation of IFI16 from nuclei to cytoplasm in RT7 cells. CONCLUSION: RIG-I and IFI16 in oral mucosal cells may play important roles in host immune response against DNA viral infection, while TNF-α contributes to development of an antiviral system via those intracellular receptors.


Subject(s)
DNA, Viral/immunology , Fibroblasts , Keratinocytes , Simplexvirus/immunology , Antiviral Restriction Factors/immunology , Cell Line , Chemokine CXCL10/immunology , Cytoplasm , Fibroblasts/immunology , Humans , Immunity , Keratinocytes/immunology , Nuclear Proteins/immunology , Phosphoproteins/immunology , Receptors, Retinoic Acid/immunology , Tumor Necrosis Factor-alpha/immunology
7.
J Anat ; 238(3): 711-719, 2021 03.
Article in English | MEDLINE | ID: mdl-33011977

ABSTRACT

Mandibular anomalies are often seen in various congenital diseases, indicating that mandibular development is under strict molecular control. Therefore, it is crucial to understand the molecular mechanisms involved in mandibular development. MicroRNAs (miRNAs) are noncoding small single-stranded RNAs that play a critical role in regulating the level of gene expression. We found that the mesenchymal conditional deletion of miRNAs arising from a lack of Dicer (an essential molecule for miRNA processing, Dicerfl/fl ;Wnt1Cre), led to an abnormal groove formation at the distal end of developing mandibles. At E10.5, when the region forms, inhibitors of Hh signaling, Ptch1 and Hhip1 showed increased expression at the region in Dicer mutant mandibles, while Gli1 (a major mediator of Hh signaling) was significantly downregulated in mutant mandibles. These suggest that Hh signaling was downregulated at the distal end of Dicer mutant mandibles by increased inhibitors. To understand whether the abnormal groove formation inDicer mutant mandibles was caused by the downregulation of Hh signaling, mice with a mesenchymal deletion of Hh signaling activity arising from a lack of Smo (an essential molecule for Hh signaling activation, Smofl/fl ;Wnt1Cre) were examined. Smofl/fl ;Wnt1Cre mice showed a similar phenotype in the distal region of their mandibles to those in Dicerfl/fl ;Wnt1Cre mice. We also found that approximately 400 miRNAs were expressed in wild-type mandibular mesenchymes at E10.5, and six microRNAs were identified as miRNAs with binding potential against both Ptch1 and Hhip1. Their expressions at the distal end of the mandible were confirmed by in situ hybridization. This indicates that microRNAs regulate the distal part of mandibular formation at an early stage of development by involving Hh signaling activity through controlling its inhibitor expression level.


Subject(s)
Hedgehog Proteins/metabolism , Mandible/growth & development , MicroRNAs/metabolism , Animals , Mandible/metabolism , Mice , Mice, Transgenic
8.
Glob Chang Biol ; 27(24): 6454-6466, 2021 12.
Article in English | MEDLINE | ID: mdl-34469040

ABSTRACT

Increasing severity and frequency of drought is predicted for large portions of the terrestrial biosphere, with major impacts already documented in wet tropical forests. Using a 4-year rainfall exclusion experiment in the Daintree Rainforest in northeast Australia, we examined canopy tree responses to reduced precipitation and soil water availability by quantifying seasonal changes in plant hydraulic and carbon traits for 11 tree species between control and drought treatments. Even with reduced soil volumetric water content in the upper 1 m of soil in the drought treatment, we found no significant difference between treatments for predawn and midday leaf water potential, photosynthesis, stomatal conductance, foliar stable carbon isotope composition, leaf mass per area, turgor loss point, xylem vessel anatomy, or leaf and stem nonstructural carbohydrates. While empirical measurements of aboveground traits revealed homeostatic maintenance of plant water status and traits in response to reduced soil moisture, modeled belowground dynamics revealed that trees in the drought treatment shifted the depth from which water was acquired to deeper soil layers. These findings reveal that belowground acclimation of tree water uptake depth may buffer tropical rainforests from more severe droughts that may arise in future with climate change.


Subject(s)
Trees , Water , Carbon , Droughts , Forests , Plant Leaves , Rainforest
9.
Infect Immun ; 86(4)2018 04.
Article in English | MEDLINE | ID: mdl-29311246

ABSTRACT

Oral keratinocytes provide the first line of host defense against oral candidiasis. We speculated that interactions of fungal cell wall components with oral keratinocytes regulate the stress response against Candida infection and examined the expression of genes induced by heat-killed Candida albicans in oral immortalized keratinocytes using a cDNA microarray technique. Of 24,000 genes revealed by that analysis, we focused on HO-1, a stress-inducible gene, as its expression was increased by both heat-killed and live C. albicans In histological findings, HO-1 expression in the superficial layers of the oral epithelium following Candida infection was elevated compared to that in healthy epithelium. We then investigated fungal cell wall components involved in induction of HO-1 expression and found that ß-glucan-containing particles (ß-GPs) increased its expression. Furthermore, ß-glucan was observed on the surface of both heat-killed C. albicans and Candida cells that had invaded the oral epithelium. Fungal ß-GPs also promoted induction of intracellular reactive oxygen species (ROS), NADPH oxidase activation, and p38 mitogen-activated protein kinase (MAPK) phosphorylation, while those specific inhibitors inhibited the HO-1 expression induced by fungal ß-GPs. Moreover, fungal ß-GPs induced Nrf2 translocation into nuclei via p38 MAPK signaling, while the HO-1 expression induced by fungal ß-GPs was inhibited by Nrf2-specific small interfering RNA (siRNA). Finally, knockdown of cells by HO-1- and Nrf2-specific siRNAs resulted in increased ß-GP-mediated ROS production compared to that in the control cells. Our results show that the HO-1 induced by fungal ß-GPs via ROS/p38 MAPK/Nrf2 from oral keratinocytes may have important roles in host defense against the stress caused by Candida infection in the oral epithelium.


Subject(s)
Candida albicans/physiology , Heme Oxygenase-1/genetics , Keratinocytes/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction , beta-Glucans/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Candidiasis/genetics , Candidiasis/metabolism , Candidiasis/microbiology , Cells, Cultured , Cytokines/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Heme Oxygenase-1/metabolism , Host-Pathogen Interactions/genetics , Humans , Keratinocytes/microbiology , Mouth Mucosa/immunology , Mouth Mucosa/metabolism , Mouth Mucosa/microbiology , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism
10.
Yeast ; 35(7): 465-475, 2018 07.
Article in English | MEDLINE | ID: mdl-29575020

ABSTRACT

Vanillin, furfural and 5-hydroxymethylfurfural (HMF) are representative fermentation inhibitors generated during the pretreatment process of lignocellulosic biomass in bioethanol production. These biomass conversion inhibitors, particularly vanillin, are known to repress translation activity in Saccharomyces cerevisiae. We have reported that the mRNAs of ADH7 and BDH2 were efficiently translated under severe vanillin stress despite marked repression of overall protein synthesis. In this study, we found that expression of VFH1 (YLL056C) was also significantly induced at the protein level by severe vanillin stress. Additionally, we demonstrated that the VFH1 promoter enabled the protein synthesis of other genes including GFP and ALD6 under severe vanillin stress. It is known that transcriptional activation of VFH1 is induced by furfural and HMF, and we verified that Vfh1 protein synthesis was also induced by furfural and HMF. The null mutant of VFH1 delayed growth in the presence of vanillin, furfural and HMF, indicating the importance of Vfh1 for sufficient tolerance against these inhibitors. The protein levels of Vfh1 induced by the inhibitors tested were markedly higher than those of Adh7 and Bdh2, suggesting the superior utility of the VFH1 promoter over the ADH7 or BDH2 promoter for breeding optimized yeast strains for bioethanol production from lignocellulosic biomass.


Subject(s)
Benzaldehydes/pharmacology , Gene Expression Regulation, Fungal/drug effects , Promoter Regions, Genetic , Protein Biosynthesis/drug effects , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcriptional Activation/drug effects , Biomass , Furaldehyde/analogs & derivatives , Furaldehyde/pharmacology , Gene Knockout Techniques , Lignin/metabolism , Protein Biosynthesis/physiology , RNA, Messenger/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/biosynthesis , Stress, Physiological
11.
Ecol Lett ; 20(6): 730-740, 2017 06.
Article in English | MEDLINE | ID: mdl-28464375

ABSTRACT

One of the major challenges in ecology is to understand how ecosystems respond to changes in environmental conditions, and how taxonomic and functional diversity mediate these changes. In this study, we use a trait-spectra and individual-based model, to analyse variation in forest primary productivity along a 3.3 km elevation gradient in the Amazon-Andes. The model accurately predicted the magnitude and trends in forest productivity with elevation, with solar radiation and plant functional traits (leaf dry mass per area, leaf nitrogen and phosphorus concentration, and wood density) collectively accounting for productivity variation. Remarkably, explicit representation of temperature variation with elevation was not required to achieve accurate predictions of forest productivity, as trait variation driven by species turnover appears to capture the effect of temperature. Our semi-mechanistic model suggests that spatial variation in traits can potentially be used to estimate spatial variation in productivity at the landscape scale.


Subject(s)
Ecosystem , Forests , Plant Leaves , Trees , Tropical Climate
12.
J Oral Pathol Med ; 45(3): 180-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26399460

ABSTRACT

BACKGROUND: CD44 and aldehyde dehydrogenase 1 (ALDH1) have been shown to be useful markers for identification of cancer stem cells (CSCs). We previously reported that glycogen synthase kinase 3ß (GSK3ß) is involved in regulation of the self-renewal ability of head and neck squamous cell carcinoma (HNSCC) CSCs. The purpose of the present study was to clarify the role of GSK3ß in CD44(high) /ALDH1(high) HNSCC cells. METHODS: Cells with greater expression of CD44 and higher ALDH1 enzymatic activity were FACS sorted from the OM-1 HNSCC cell line. The self-renewal ability of CD44(high) /ALDH1(high) cells was then examined using a tumor sphere formation assay. mRNA expressions of the stem cell markers Sox2, Oct4, and Nanog, as well as GSK3ß were evaluated by real-time RT-PCR. RESULTS: CD44(high) /ALDH1(high) cells exhibited higher tumor sphere forming ability and increased expression of stem cell markers as compared with CD44(high) /ALDH1(low) cells. Interestingly, spindle-shaped cells positive for vimentin were found in the CD44(high) /ALDH1(high) but not the CD44(high) /ALDH1(low) cell population. In addition, the ALDH1 activity and sphere forming ability of CD44(high) /ALDH1(high) cells was significantly inhibited by GSK3ß knockdown. On the other hand, CD44(high) /ALDH1(low) cells exhibited high epidermal growth factor receptor (EGFR) expression and increased cell growth. CONCLUSIONS: Our results show that GSK3ß plays a major role in maintenance of stemness of CD44(high) /ALDH1(high) HNSCC cells. Additionally, they indicate a close relationship between CSC and mesenchymal characteristics in HNSCC.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Head and Neck Neoplasms/metabolism , Hyaluronan Receptors/biosynthesis , Isoenzymes/drug effects , Neoplastic Stem Cells/metabolism , Retinal Dehydrogenase/drug effects , Aldehyde Dehydrogenase 1 Family , Biomarkers, Tumor/biosynthesis , Carcinoma, Squamous Cell/enzymology , Cell Line, Tumor , Enzyme Activation , ErbB Receptors/biosynthesis , Head and Neck Neoplasms/enzymology , Humans , Hyaluronan Receptors/drug effects , Isoenzymes/biosynthesis , Isoenzymes/metabolism , Mesenchymal Stem Cells/enzymology , Mesenchymal Stem Cells/metabolism , Nanog Homeobox Protein/biosynthesis , Neoplastic Stem Cells/enzymology , Octamer Transcription Factors/biosynthesis , RNA, Messenger/biosynthesis , RNA, Small Interfering/genetics , Retinal Dehydrogenase/biosynthesis , Retinal Dehydrogenase/metabolism , SOXB2 Transcription Factors/biosynthesis , Squamous Cell Carcinoma of Head and Neck
13.
Mol Genet Metab ; 115(4): 180-5, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25982064

ABSTRACT

Hypophosphatasia (HPP) is a genetic disease characterized by defective calcification of hard tissues such as bone and teeth accompanying deficiency of serum alkaline phosphatase (ALP) activity. Its development results from various mutations in the ALPL gene encoding tissue-nonspecific ALP (TNSALP). HPP is known to be transmitted in an autosomal recessive or autosomal dominant manner. A point mutation (c.323C>T) in the ALPL gene leading to a proline to leucine substitution at position 108 of TNSALP was first reported in a patient diagnosed with odonto-HPP (M Herasse et al., J Med Genet 2003;40:605-609), although the effects of this mutation on the TNSALP molecule have not been elucidated. To understand the molecular basis of this dominantly transmitted HPP, we first characterized TNSALP (P108L) by expressing it in COS-1 cells transiently. In contrast to wild-type TNSALP (WT), TNSALP (P108L) showed virtually no ALP activity. When coexpressed with TNSALP (WT), TNSALP (P108L) significantly inhibited the enzyme activity of TNSALP (WT), confirming that this mutant TNSALP exerts a dominant negative effect on TNSALP (WT). Using immunofluorescence and digestion with phosphatidylinositol-specific phospholipase C, we demonstrated that TNSALP (P108L) was anchored to the cell surface via glycosylphosphatidylinositol-like TNSALP (WT) in a Tet-On CHO cell expression system. Consistent with this, TNSALP (P108L) acquired endo-ß-N-acetylglucosaminidase H resistance and sialic acids, as evidenced by glycosidase treatments. Importantly, TNSALP (WT) largely formed a functional dimeric structure, while TNSALP (P108L) was found to be present as a monomer in the cell. This indicates that the molecular structure of TNSALP is affected by a missense mutation at position 108, which is in contact with the active site, such that it no longer assembles into the functional dimeric form. Collectively, these results may explain why TNSALP (P108L) loses its ALP activity, even though it is able to gain access to the cell surface.


Subject(s)
Alkaline Phosphatase/genetics , Hypophosphatasia/genetics , Leucine/metabolism , Mutation , Proline/metabolism , Tooth Demineralization/congenital , Alkaline Phosphatase/chemistry , Alkaline Phosphatase/metabolism , Animals , CHO Cells , COS Cells , Chlorocebus aethiops , Cricetulus , Humans , Hypophosphatasia/enzymology , Phenotype , Tooth Demineralization/enzymology , Tooth Demineralization/genetics
14.
Cell Physiol Biochem ; 34(5): 1556-65, 2014.
Article in English | MEDLINE | ID: mdl-25359319

ABSTRACT

BACKGROUND: Innate immune response by oral mucosal cells may be the first line of host defense against viral infection. Retinoic acid-inducible gene-I (RIG-I) recognizes viral dsRNA in the cytoplasm, and RIG-I-mediated signaling regulates antiviral type I IFN, and inflammatory chemokine production. Here, we tested the hypothesis that oral mucosal cell participation in host defense against viral infection via RIG-I. METHODS: RIG-I expression was detected in immortalized oral keratinocytes (RT7), oral fibroblasts (GT1) using and RT-PCR and immunohistochemistry. RT7 and GT1 were exposed to dsRNA virus mimic Poly I:C-LMW/LyoVec (PLV). Expression of IFN-ß and CXCL10 via RIG-I was examined by Real-time RT-PCR and ELISA. Phosphorylation of IRF3 and STAT1 were detected by western blotting. RESULTS: RT7 and GT1 constitutively expressed RIG-I in the cytoplasm. Furthermore, PLV increased IFN-ß and CXCL10 productions in both RT7 and GT1 via RIG-I concurrent with phosphorylation of IRF3 and STAT1. PLV-induced CXCL10 production was attenuated by neutralization of IFN-ß and blocking of IFN-α/ß receptor (IFNAR), indicating primal IFN-ß production via the RIG-I-IRF3 axis, which eventually induces CXCL10 production via the IFNAR -STAT1 axis. CONCLUSION: We propose that RIG-I in oral keratinocytes and fibroblasts may cumulatively develop host-defense mechanisms against viral infection in oral mucosa.


Subject(s)
DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Fibroblasts/metabolism , Keratinocytes/metabolism , Mouth Mucosa/metabolism , Cell Line , Chemokine CXCL10/metabolism , Cytoplasm/metabolism , DEAD Box Protein 58 , Humans , Immunity, Innate/genetics , Interferon Regulatory Factor-3/metabolism , Interferon-beta/metabolism , Phosphorylation/genetics , RNA, Double-Stranded/genetics , Receptor, Interferon alpha-beta/metabolism , Receptors, Immunologic , STAT1 Transcription Factor/metabolism , Signal Transduction/genetics
15.
Sci Rep ; 13(1): 323, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36609635

ABSTRACT

Given its limited accessibility, the CA2 area has been less investigated compared to other subregions of the hippocampus. While the development of transgenic mice expressing Cre recombinase in the CA2 has revealed unique features of this area, the use of mouse lines has several limitations, such as lack of specificity. Therefore, a specific gene delivery system is required. Here, we confirmed that the AAV-PHP.eB capsid preferably infected CA2 pyramidal cells following retro-orbital injection and demonstrated that the specificity was substantially higher after injection into the lateral ventricle. In addition, a tropism for the CA2 area was observed in organotypic slice cultures. Combined injection into the lateral ventricle and stereotaxic injection into the CA2 area specifically introduced the transgene into CA2 pyramidal cells, enabling us to perform targeted patch-clamp recordings and optogenetic manipulation. These results suggest that AAV-PHP.eB is a versatile tool for specific gene transduction in CA2 pyramidal cells.


Subject(s)
Genetic Vectors , Lateral Ventricles , Mice , Animals , Transduction, Genetic , Genetic Vectors/genetics , Gene Transfer Techniques , Mice, Transgenic , Pyramidal Cells , Dependovirus/genetics
16.
Neurosci Res ; 190: 92-106, 2023 May.
Article in English | MEDLINE | ID: mdl-36574563

ABSTRACT

The claustrum coordinates the activities of individual cortical areas through abundant reciprocal connections with the cerebral cortex. Although these excitatory connections have been extensively investigated in three subregions of the claustrum-core region and dorsal and ventral shell regions-the contribution of GABAergic neurons to the circuitry in each subregion remains unclear. Here, we examined the distribution of GABAergic neurons and their dendritic and axonal arborizations in each subregion. Combining in situ hybridization with immunofluorescence histochemistry showed that approximately 10% of neuronal nuclei-positive cells expressed glutamic acid decarboxylase 67 mRNA across the claustral subregions. Approximately 20%, 30%, and 10% of GABAergic neurons were immunoreactive for parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal polypeptide, respectively, in each subregion, and these neurochemical markers showed little overlap with each other. We then reconstructed PV and SOM neurons labeled with adeno-associated virus vectors. The dendrites and axons of PV and SOM neurons were preferentially localized to their respective subregions where their cell bodies were located. Furthermore, the axons were preferentially extended in a rostrocaudal direction, whereas the dendrites were relatively isotropic. The present findings suggest that claustral PV and SOM neurons might execute information processing separately within the core and shell regions.


Subject(s)
Claustrum , Parvalbumins , Mice , Animals , Parvalbumins/metabolism , Claustrum/metabolism , Axons/metabolism , GABAergic Neurons/metabolism , Somatostatin/metabolism , Dendrites/metabolism
17.
Sci Adv ; 9(47): eadg3193, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37992159

ABSTRACT

Repulsive guidance molecule A (RGMa) was originally identified as a neuronal growth cone-collapsing factor. Previous reports have demonstrated the multifunctional roles of RGMa mediated by neogenin1. However, the pathogenic involvement of RGMa in amyotrophic lateral sclerosis (ALS) remains unclear. Here, we demonstrated that RGMa concentration was elevated in the cerebrospinal fluid of both patients with ALS and transgenic mice overexpressing the mutant human superoxide dismutase1 (mSOD1 mice). Treatment with humanized anti-RGMa monoclonal antibody ameliorated the clinical symptoms in mSOD1 mice. Histochemical analysis revealed that the anti-RGMa antibody significantly decreased mutant SOD1 protein accumulation in the motor neurons of mSOD1 mice via inhibition of actin depolymerization. In vitro analysis revealed that the anti-RGMa antibody inhibited the cellular uptake of the mutant SOD1 protein, presumably by reinforcing the neuronal actin barrier. Collectively, these data suggest that RGMa leads to the collapse of the neuronal actin barrier and promotes aberrant protein deposition, resulting in exacerbation of the ALS pathology.


Subject(s)
Amyotrophic Lateral Sclerosis , Animals , Humans , Mice , Actins , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Antibodies , Mice, Transgenic , Motor Neurons/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics
18.
Biochim Biophys Acta ; 1812(3): 326-32, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21168482

ABSTRACT

Mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene are responsible for hypophosphatasia, an inborn error of bone and teeth metabolism associated with reduced levels of serum alkaline phosphatase activity. A missense mutation (c.346G>A) of TNSALP gene, which converts Ala to Thr at position 116 (according to standardized nomenclature), was reported in dominantly transmitted hypophosphatasia patients (A.S. Lia-Baldini et al. Hum Genet. 109 (2001) 99-108). To investigate molecular phenotype of TNSALP (A116T), we expressed it in the COS-1 cells or Tet-On CHO K1 cells. TNSALP (A116T) displayed not only negligible alkaline phosphatase activity, but also a weak dominant negative effect when co-expressed with the wild-type enzyme. In contrast to TNSALP (W, wild-type), which was present mostly as a non-covalently assembled homodimeric form, TNSALP (A116T) was found to exist as a monomer and heterogeneously associated aggregates covalently linked via disulfide bonds. Interestingly, both the monomer and aggregate forms of TNSALP (A116T) gained access to the cell surface and were anchored to the cell membrane via glycosylphosphatidylinositol (GPI). Co-expression of secretory forms of TNSALP (W) and TNSALP (A116T), which are engineered to replace the C-terminal GPI anchor with a tag sequence (his-tag or flag-tag), resulted in the release of heteromeric complexes consisting of TNSALP (W)-his and TNSALP (A116T)-flag. Taken together, these findings strongly suggest that TNSALP (A116T) fails to fold properly and forms disulfide-bonded aggregates, though it is indeed capable of interacting with the wild-type and reaching the cell surface, therefore explaining its dominant transmission.


Subject(s)
Alanine/genetics , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Hypophosphatasia/enzymology , Hypophosphatasia/genetics , Mutation, Missense/genetics , Threonine/genetics , Alanine/chemistry , Alanine/metabolism , Amino Acid Substitution , Animals , Blotting, Western , CHO Cells , COS Cells , Chlorocebus aethiops , Cricetinae , Cricetulus , Disulfides/chemistry , Gene Expression , Genes, Dominant , Humans , Immunoprecipitation , Threonine/chemistry , Threonine/metabolism
19.
J Appl Oral Sci ; 30: e20220158, 2022.
Article in English | MEDLINE | ID: mdl-36350873

ABSTRACT

OBJECTIVE: Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a member of the carcinoembryonic antigen family. Although its expression has been found in chronic oral inflammatory epithelium, this study aimed to know whether CEACAM1 in oral keratinocytes participates in host immune response against Candida albicans . METHODOLOGY: We investigated CEACAM1 expression in oral keratinocytes induced by C. albicans as well as by Candida cell wall component ß-glucan particles (ß-GPs). Furthermore, the effects of CEACAM1 on ß-GPs-induced heme oxygenase-1 (HO-1) expression and its related signals were examined. RESULTS: Fluorescence staining showed CEACAM1 expression in oral keratinocytes (RT7) cells, whereas quantitative reverse transcription (RT)-PCR indicated that both live and heat-killed C. albicans increased CEACAM1 mRNA expression in RT7 cells. Examinations using quantitative RT-PCR and western blotting indicated that CEACAM1 expression was also increased by ß-GPs derived from C. albicans . Specific siRNA for CEACAM1 decreased HO-1 expression induced by ß-GPs from C. albicans as well as the budding yeast microorganism Saccharomyces cerevisiae . Moreover, knockdown of CEACAM1 decreased ß-GPs-induced ROS activity in the early phase and translocation of Nrf2 into the nucleus. CONCLUSION: CEACAM1 in oral keratinocytes may have a critical role in regulation of HO-1 for host immune defense during Candida infection.


Subject(s)
Heme Oxygenase-1 , beta-Glucans , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/pharmacology , beta-Glucans/pharmacology , beta-Glucans/metabolism , Carcinoembryonic Antigen/metabolism , Carcinoembryonic Antigen/pharmacology , Cell Adhesion Molecule-1/metabolism , Glucans/metabolism , Glucans/pharmacology , Candida , Keratinocytes , Candida albicans/physiology
20.
iScience ; 25(1): 103601, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35106459

ABSTRACT

The mammalian brain is organized over sizes that span several orders of magnitude, from synapses to the entire brain. Thus, a technique to visualize neural circuits across multiple spatial scales (multi-scale neuronal imaging) is vital for deciphering brain-wide connectivity. Here, we developed this technique by coupling successive light microscopy/electron microscopy (LM/EM) imaging with a glutaraldehyde-resistant tissue clearing method, ScaleSF. Our multi-scale neuronal imaging incorporates (1) brain-wide macroscopic observation, (2) mesoscopic circuit mapping, (3) microscopic subcellular imaging, and (4) EM imaging of nanoscopic structures, allowing seamless integration of structural information from the brain to synapses. We applied this technique to three neural circuits of two different species, mouse striatofugal, mouse callosal, and marmoset corticostriatal projection systems, and succeeded in simultaneous interrogation of their circuit structure and synaptic connectivity in a targeted way. Our multi-scale neuronal imaging will significantly advance the understanding of brain-wide connectivity by expanding the scales of objects.

SELECTION OF CITATIONS
SEARCH DETAIL