ABSTRACT
An original strategy toward bridged tetraoxazaspirobicycloalkanes was developed. The synthesis is based on a three-component condensation-cyclization reaction of primary arylamines with 1,1'-peroxybis (1-hydroperoxycycloalkanes) and pentane-1,5-dial catalyzed by Sm(NO3)3·6H2O. The structures and conformations of the products were determined by X-ray diffraction analysis and 1H and 13C NMR spectroscopy. High cytotoxic activity and biological potential toward ferroptosis induction were found for the synthesized bicyclic aza-peroxides.
Subject(s)
Antineoplastic Agents , Peroxides , Samarium , Molecular Conformation , Crystallography, X-Ray , Antineoplastic Agents/pharmacology , CatalysisABSTRACT
Co(OAc)2-catalyzed ring transformation reaction of 10-aryl-7,8,12,13-tetraoxa-10-azaspiro[5.7]tridecanes with α,ω-dithiols (ethane-1,2-, propane-1,3-, butane-1,4-, pentane-1,5-, and hexane-1,6-dithiols, 3,6-dioxaoctane-1,8-dithiol) giving 3-aryl-1,5,3-dithiazacyclanes was studied.
ABSTRACT
An efficient method was developed for the synthesis of tetra(spirocycloalkane)-substituted α,ω-di(1,2,4,5,7,8-hexaoxa-10-azacycloundecan-10-yl)alkanes by a ring transformation reaction of 3,6-di(spirocycloalkane)-substituted 1,2,4,5,7,8,10-heptaoxacycloundecanes with α,ω-alkanediamines (1,4-butane-, 1,5-pentane-, 1,7-heptane-, 1,8-octane- and 1,10-decanediamines) catalyzed by Sm(NO3)3/γ-Al2O3. Using flow cytometry, it was shown for the first time that synthesized dimeric azatriperoxides are efficient apoptosis inducers with Jurkat, K562, U937, and Hek296.