Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 589(7840): 125-130, 2021 01.
Article in English | MEDLINE | ID: mdl-32906143

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic1. To understand the pathogenicity and antigenic potential of SARS-CoV-2 and to develop therapeutic tools, it is essential to profile the full repertoire of its expressed proteins. The current map of SARS-CoV-2 coding capacity is based on computational predictions and relies on homology with other coronaviruses. As the protein complement varies among coronaviruses, especially in regard to the variety of accessory proteins, it is crucial to characterize the specific range of SARS-CoV-2 proteins in an unbiased and open-ended manner. Here, using a suite of ribosome-profiling techniques2-4, we present a high-resolution map of coding regions in the SARS-CoV-2 genome, which enables us to accurately quantify the expression of canonical viral open reading frames (ORFs) and to identify 23 unannotated viral ORFs. These ORFs include upstream ORFs that are likely to have a regulatory role, several in-frame internal ORFs within existing ORFs, resulting in N-terminally truncated products, as well as internal out-of-frame ORFs, which generate novel polypeptides. We further show that viral mRNAs are not translated more efficiently than host mRNAs; instead, virus translation dominates host translation because of the high levels of viral transcripts. Our work provides a resource that will form the basis of future functional studies.


Subject(s)
Gene Expression Profiling , Genome, Viral/genetics , Open Reading Frames/genetics , Protein Biosynthesis , SARS-CoV-2/genetics , Viral Proteins/biosynthesis , Viral Proteins/genetics , Animals , Cell Line , Humans , Molecular Sequence Annotation , Peptides/genetics , Peptides/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Ribosomes/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Proteins/metabolism
2.
Nature ; 594(7862): 240-245, 2021 06.
Article in English | MEDLINE | ID: mdl-33979833

ABSTRACT

The coronavirus SARS-CoV-2 is the cause of the ongoing pandemic of COVID-191. Coronaviruses have developed a variety of mechanisms to repress host mRNA translation to allow the translation of viral mRNA, and concomitantly block the cellular innate immune response2,3. Although several different proteins of SARS-CoV-2 have previously been implicated in shutting off host expression4-7, a comprehensive picture of the effects of SARS-CoV-2 infection on cellular gene expression is lacking. Here we combine RNA sequencing, ribosome profiling and metabolic labelling of newly synthesized RNA to comprehensively define the mechanisms that are used by SARS-CoV-2 to shut off cellular protein synthesis. We show that infection leads to a global reduction in translation, but that viral transcripts are not preferentially translated. Instead, we find that infection leads to the accelerated degradation of cytosolic cellular mRNAs, which facilitates viral takeover of the mRNA pool in infected cells. We reveal that the translation of transcripts that are induced in response to infection (including innate immune genes) is impaired. We demonstrate this impairment is probably mediated by inhibition of nuclear mRNA export, which prevents newly transcribed cellular mRNA from accessing ribosomes. Overall, our results uncover a multipronged strategy that is used by SARS-CoV-2 to take over the translation machinery and to suppress host defences.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , Protein Biosynthesis , SARS-CoV-2/pathogenicity , 5' Untranslated Regions/genetics , COVID-19/genetics , COVID-19/immunology , Cell Line , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/genetics , Protein Biosynthesis/genetics , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/metabolism , Ribosomes/metabolism , Viral Nonstructural Proteins/metabolism
3.
Curr Issues Mol Biol ; 45(10): 7944-7955, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37886945

ABSTRACT

Following viral infection, T-cells are crucial for an effective immune response to intracellular pathogens, including respiratory viruses. During the COVID-19 pandemic, diverse assays were required in pre-clinical trials to evaluate the immune response following vaccination against SARS-CoV-2 and assess the response following exposure to the virus. To assess the nature and potency of the cellular response to infection or vaccination, a reliable and specific activity assay was needed. A cellular activity assay based on the presentation of short peptides (epitopes) allows the identification of T cell epitopes displayed on different alleles of the MHC, shedding light on the strength of the immune response towards antigens and aiding in antigen design for vaccination. In this report, we describe two approaches for scanning T cell epitopes on the surface glycoprotein of the SARS-CoV-2 (spike), which is utilized for attachment and entry and serves as an antigen in many vaccine candidates. We demonstrate that epitope scanning is feasible using peptide libraries or computational scanning combined with a cellular activity assay. Our scans identified four CD8 T cell epitopes, including one novel undescribed epitope. These epitopes enabled us to establish a reliable T-cell response assay, which was examined and used in various experimental mouse models for SARS-CoV-2 infection and vaccination. These approaches could potentially aid in future antigen design for vaccination and establish cellular activity assays against uncharacterized antigens of emerging pathogens.

4.
PLoS Pathog ; 17(12): e1010175, 2021 12.
Article in English | MEDLINE | ID: mdl-34929007

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Currently, as dangerous mutations emerge, there is an increased demand for specific treatments for SARS-CoV-2 infected patients. The spike glycoprotein on the virus envelope binds to the angiotensin converting enzyme 2 (ACE2) on host cells through its receptor binding domain (RBD) to mediate virus entry. Thus, blocking this interaction may inhibit viral entry and consequently stop infection. Here, we generated fusion proteins composed of the extracellular portions of ACE2 and RBD fused to the Fc portion of human IgG1 (ACE2-Ig and RBD-Ig, respectively). We demonstrate that ACE2-Ig is enzymatically active and that it can be recognized by the SARS-CoV-2 RBD, independently of its enzymatic activity. We further show that RBD-Ig efficiently inhibits in-vivo SARS-CoV-2 infection better than ACE2-Ig. Mechanistically, we show that anti-spike antibody generation, ACE2 enzymatic activity, and ACE2 surface expression were not affected by RBD-Ig. Finally, we show that RBD-Ig is more efficient than ACE2-Ig at neutralizing high virus titers. We thus propose that RBD-Ig physically blocks virus infection by binding to ACE2 and that RBD-Ig should be used for the treatment of SARS-CoV-2-infected patients.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/metabolism , Protein Domains , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding Sites , Binding Sites, Antibody , COVID-19/prevention & control , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/therapeutic use , Immunoglobulin G/therapeutic use , Mice, Transgenic , Neutralization Tests , Protein Binding , Recombinant Fusion Proteins/therapeutic use , SARS-CoV-2/drug effects , Vero Cells
5.
J Biol Chem ; 296: 100470, 2021.
Article in English | MEDLINE | ID: mdl-33639165

ABSTRACT

The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health. Vaccines are ideal solutions to prevent infection, but treatments are also needed for those who have contracted the virus to limit negative outcomes, when vaccines are not applicable. Viruses must cross host cell membranes during their life cycle, creating a dependency on processes involving membrane dynamics. Thus, in this study, we examined whether the synthetic machinery for glycosphingolipids, biologically active components of cell membranes, can serve as a therapeutic target to combat SARS-CoV-2. We examined the antiviral effect of two specific inhibitors of glucosylceramide synthase (GCS): (i) Genz-123346, an analogue of the United States Food and Drug Administration-approved drug Cerdelga and (ii) GENZ-667161, an analogue of venglustat, which is currently under phase III clinical trials. We found that both GCS inhibitors inhibit replication of SARS-CoV-2. Moreover, these inhibitors also disrupt replication of influenza virus A/PR/8/34 (H1N1). Our data imply that synthesis of glycosphingolipids is necessary to support viral life cycles and suggest that GCS inhibitors should be further explored as antiviral therapies.


Subject(s)
Antiviral Agents/pharmacology , Carbamates/pharmacology , Dioxanes/pharmacology , Glucosyltransferases/antagonists & inhibitors , Glycosphingolipids/antagonists & inhibitors , Influenza A Virus, H1N1 Subtype/drug effects , Pyrrolidines/pharmacology , Quinuclidines/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , COVID-19/enzymology , COVID-19/virology , Carbamates/chemical synthesis , Cell Membrane/drug effects , Cell Membrane/enzymology , Cell Membrane/virology , Chlorocebus aethiops , Clinical Trials, Phase III as Topic , Dioxanes/chemical synthesis , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Gene Expression Regulation , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Glycosphingolipids/biosynthesis , Host-Pathogen Interactions/genetics , Humans , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/drug therapy , Influenza, Human/enzymology , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Pyrrolidines/chemical synthesis , Quinuclidines/chemical synthesis , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , Signal Transduction , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
6.
Arch Toxicol ; 96(8): 2329-2339, 2022 08.
Article in English | MEDLINE | ID: mdl-35577986

ABSTRACT

BriLife®, a vector-based vaccine that utilizes the recombinant vesicular stomatitis virus (VSV) platform to express and present the spike antigen of SARS-CoV-2, is undergoing testing in a phase 2 clinical trial in Israel. A nonclinical repeated-dose (GLP) toxicity study in New Zealand white rabbits was performed to evaluate the potential toxicity, local tolerance, immunogenicity and biodistribution of the vaccine. rVSV-ΔG-SARS-CoV-2-S (or vehicle) was administered intramuscularly to two groups of animals (106, 107 PFU/animal, n = 10/sex/group) on three occasions, at 2-week intervals, followed by a 3-week recovery period. Systemic clinical signs, local reactions, body weight, body temperature, food consumption, ophthalmology, urinalysis, clinical pathology, C-reactive protein, viremia and antibody levels were monitored. Gross pathology was performed, followed by organs/tissues collection for biodistribution and histopathological evaluation. Treatment-related changes were restricted to multifocal minimal myofiber necrosis at the injection sites, and increased lymphocytic cellularity in the iliac and mesenteric lymph nodes and in the spleen. These changes were considered related to the inflammatory reaction elicited, and correlated with a trend for recovery. Detection of rVSV-ΔG-SARS-CoV-2-S vaccine RNA was noted in the regional iliac lymph node in animals assigned to the high-dose group, at both termination time points. A significant increase in binding and neutralizing antibody titers was observed following vaccination at both vaccine doses. In view of the findings, it was concluded that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe. These results supported the initiation of clinical trials.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Rabbits , SARS-CoV-2 , Tissue Distribution
7.
Arch Toxicol ; 96(3): 859-875, 2022 03.
Article in English | MEDLINE | ID: mdl-35032184

ABSTRACT

rVSV-ΔG-SARS-CoV-2-S is a clinical stage (Phase 2) replication competent recombinant vaccine against SARS-CoV-2. To evaluate the safety profile of the vaccine, a series of non-clinical safety, immunogenicity and efficacy studies were conducted in four animal species, using multiple doses (up to 108 Plaque Forming Units/animal) and dosing regimens. There were no treatment-related mortalities or any noticeable clinical signs in any of the studies. Compared to unvaccinated controls, hematology and biochemistry parameters were unremarkable and no adverse histopathological findings. There was no detectable viral shedding in urine, nor viral RNA detected in whole blood or serum samples seven days post vaccination. The rVSV-ΔG-SARS-CoV-2-S vaccination gave rise to neutralizing antibodies, cellular immune responses, and increased lymphocytic cellularity in the spleen germinal centers and regional lymph nodes. No evidence for neurovirulence was found in C57BL/6 immune competent mice or in highly sensitive type I interferon knock-out mice. Vaccine virus replication and distribution in K18-human Angiotensin-converting enzyme 2-transgenic mice showed a gradual clearance from the vaccination site with no vaccine virus recovered from the lungs. The nonclinical data suggest that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe and immunogenic. These results supported the initiation of clinical trials, currently in Phase 2.


Subject(s)
COVID-19 Vaccines/toxicity , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Cricetinae , Female , Membrane Glycoproteins/genetics , Mesocricetus , Mice , Mice, Inbred C57BL , Rabbits , Swine , Vaccination , Vaccines, Synthetic/toxicity , Viral Envelope Proteins/genetics
8.
J Am Soc Nephrol ; 32(9): 2242-2254, 2021 09.
Article in English | MEDLINE | ID: mdl-34112705

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) causes significan t morbidity, mainly from pulmonary involvement, extrapulmonary symptoms are also major componen ts of the disease. Kidney disease, usually presenting as AKI, is particularly severe among patients with COVID-19. It is unknown, however, whether such injury results from direct kidney infection with COVID-19's causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or from indirect mechanisms. METHODS: Using ex vivo cell models, we sought to analyze SARS-CoV-2 interactions with kidney tubular cells and assess direct tubular injury. These models comprised primary human kidney epithelial cells (derived from nephrectomies) and grown as either proliferating monolayers or quiescent three-dimensional kidney spheroids. RESULTS: We demonstrated that viral entry molecules and high baseline levels of type 1 IFN-related molecules were present in monolayers and kidney spheroids. Although both models support viral infection and replication, they did not exhibit a cytopathic effect and cell death, outcomes that were strongly present in SARS-CoV-2-infected controls (African green monkey kidney clone E6 [Vero E6] cultures). A comparison of monolayer and spheroid cultures demonstrated higher infectivity and replication of SARS-CoV-2 in actively proliferating monolayers, although the spheroid cultures exhibited high er levels of ACE2. Monolayers exhibited elevation of some tubular injury molecules-including molecules related to fibrosis (COL1A1 and STAT6) and dedifferentiation (SNAI2)-and a loss of cell identity, evident by reduction in megalin (LRP2). The three-dimensional spheroids were less prone to such injury. CONCLUSIONS: SARS-CoV-2 can infect kidney cells without a cytopathic effect. AKI-induced cellular proliferation may potentially intensify infectivity and tubular damage by SARS-CoV-2, suggesting that early intervention in AKI is warranted to help minimize kidney infection.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/virology , COVID-19/complications , SARS-CoV-2/pathogenicity , Spheroids, Cellular/virology , Animals , Cells, Cultured , Chlorocebus aethiops , Cohort Studies , Cytopathogenic Effect, Viral , Epithelial Cells/pathology , Epithelial Cells/virology , Host Microbial Interactions , Humans , Interferon Type I/metabolism , Kidney/immunology , Kidney/pathology , Kidney/virology , Mice , Mice, Inbred NOD , Mice, SCID , Models, Biological , Pandemics , Receptors, Virus/metabolism , Retrospective Studies , SARS-CoV-2/physiology , Spheroids, Cellular/pathology , Vero Cells , Virus Replication
9.
Euro Surveill ; 27(35)2022 09.
Article in English | MEDLINE | ID: mdl-36052723

ABSTRACT

The current monkeypox virus global spread and lack of data regarding clinical specimens' infectivity call for examining virus infectivity, and whether this correlates with results from PCR, the available diagnostic tool. We show strong correlation between viral DNA amount in clinical specimens and virus infectivity toward BSC-1 cell line. Moreover, we define a PCR threshold value (Cq ≥ 35, ≤ 4,300 DNA copies/mL), corresponding to negative viral cultures, which may assist risk-assessment and decision-making regarding protective-measures and guidelines for patients with monkeypox.


Subject(s)
Mpox (monkeypox) , DNA, Viral/analysis , DNA, Viral/genetics , Humans , Israel/epidemiology , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Monkeypox virus/genetics , Polymerase Chain Reaction/methods
10.
Nano Lett ; 21(11): 4774-4779, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34032435

ABSTRACT

The COVID-19 pandemic led to development of mRNA vaccines, which became a leading anti-SARS-CoV-2 immunization platform. Preclinical studies are limited to infection-prone animals such as hamsters and monkeys in which protective efficacy of vaccines cannot be fully appreciated. We recently reported a SARS-CoV-2 human Fc-conjugated receptor-binding domain (RBD-hFc) mRNA vaccine delivered via lipid nanoparticles (LNPs). BALB/c mice demonstrated specific immunologic responses following RBD-hFc mRNA vaccination. Now, we evaluated the protective effect of this RBD-hFc mRNA vaccine by employing the K18 human angiotensin-converting enzyme 2 (K18-hACE2) mouse model. Administration of an RBD-hFc mRNA vaccine to K18-hACE2 mice resulted in robust humoral responses comprising binding and neutralizing antibodies. In correlation with this response, 70% of vaccinated mice withstood a lethal SARS-CoV-2 dose, while all control animals succumbed to infection. To the best of our knowledge, this is the first nonreplicating mRNA vaccine study reporting protection of K18-hACE2 against a lethal SARS-CoV-2 infection.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Animals , Humans , Lipids , Mice , Mice, Inbred BALB C , Mice, Transgenic , Pandemics , RNA, Messenger/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
11.
J Infect Dis ; 224(4): 616-619, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34398244

ABSTRACT

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may influence the effectiveness of existing laboratory diagnostics. In the current study we determined whether the British (20I/501Y.V1) and South African (20H/501Y.V2) SARS-CoV-2 variants of concern are detected with an in-house S1-based antigen detection assay, analyzing spiked pools of quantitative reverse-transcription polymerase chain reaction-negative nasopharyngeal swab specimens. The assay, combining 4 monoclonal antibodies, allowed sensitive detection of both the wild type and the variants of concern, despite accumulation of several mutations in the variants' S1 region-results suggesting that this combination, targeting distinct epitopes, enables both specificity and the universality.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/classification , Antibodies, Monoclonal/immunology , Antigens, Viral/immunology , Antigens, Viral/isolation & purification , COVID-19/immunology , Humans , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Viral Load
12.
Anal Bioanal Chem ; 413(13): 3501-3510, 2021 May.
Article in English | MEDLINE | ID: mdl-33768365

ABSTRACT

Public health experts emphasize the need for quick, point-of-care SARS-CoV-2 detection as an effective strategy for controlling virus spread. To this end, many "antigen" detection devices were developed and commercialized. These devices are mostly based on detecting SARS-CoV-2's nucleocapsid protein. Recently, alerts issued by both the FDA and the CDC raised concerns regarding the devices' tendency to exhibit false positive results. In this work, we developed a novel alternative spike-based antigen assay, comprising four high-affinity, specific monoclonal antibodies, directed against different epitopes on the spike's S1 subunit. The assay's performance was evaluated for COVID-19 detection from nasopharyngeal swabs, compared to an in-house nucleocapsid-based assay, composed of novel antibodies directed against the nucleocapsid. Detection of COVID-19 was carried out in a cohort of 284 qRT-PCR positive and negative nasopharyngeal swab samples. The time resolved fluorescence (TRF) ELISA spike assay displayed very high specificity (99%) accompanied with a somewhat lower sensitivity (66% for Ct < 25), compared to the nucleocapsid ELISA assay which was more sensitive (85% for Ct < 25) while less specific (87% specificity). Despite being outperformed by qRT-PCR, we suggest that there is room for such tests in the clinical setting, as cheap and rapid pre-screening tools. Our results further suggest that when applying antigen detection, one must consider its intended application (sensitivity vs specificity), taking into consideration that the nucleocapsid might not be the optimal target. In this regard, we propose that a combination of both antigens might contribute to the validity of the results. Schematic representation of sample collection and analysis. The figure was created using BioRender.com.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/analysis , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/analysis , Enzyme-Linked Immunosorbent Assay/methods , Humans , Phosphoproteins/analysis , Sensitivity and Specificity , Specimen Handling
13.
Emerg Infect Dis ; 25(5): 980-983, 2019 05.
Article in English | MEDLINE | ID: mdl-30848724

ABSTRACT

We report a case of monkeypox in a man who returned from Nigeria to Israel in 2018. Virus was detected in pustule swabs by transmission electron microscopy and PCR and confirmed by immunofluorescence assay, tissue culture, and ELISA. The West Africa monkeypox outbreak calls for increased awareness by public health authorities worldwide.


Subject(s)
Communicable Diseases, Imported/diagnosis , Communicable Diseases, Imported/epidemiology , Disease Outbreaks , Monkeypox virus , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Animals , Biopsy , Chlorocebus aethiops , Communicable Diseases, Imported/history , Communicable Diseases, Imported/virology , History, 21st Century , Humans , Israel/epidemiology , Mpox (monkeypox)/history , Mpox (monkeypox)/virology , Skin/pathology , Skin/virology , Vero Cells
14.
J Infect Dis ; 218(9): 1500-1506, 2018 09 22.
Article in English | MEDLINE | ID: mdl-30184090

ABSTRACT

Sindbis virus (SINV) is a mosquito-borne Alphavirus responsible for outbreaks of SINV disease, mainly in north Europe. SINV has been isolated from mosquitoes in Israel since the 1980s but SINV disease outbreaks have never been recorded. To gain better understanding of the kinetics of SINV circulation in Israel, 3008 mosquito pools, collected 2004-2006 and 2013-2015, were tested for SINV and phylogenetic analysis was conducted on partially sequenced SINV-positive pools. Results indicate possible expansion of SINV circulation across Israel in 2013-2015 compared to 2004-2006 with 6.35% (191 pools) of total pools positive for SINV RNA. Phylogenetic analysis showed all sequenced Israeli SINV strains belong to genotype I and form, together with SINV sequences from Saudi Arabia, a distinct Middle Eastern cluster. With high endemicity of SINV and as a major crossroads for bird migration between Africa and Eurasia, Israel provides valuable information on SINV dynamics and pathogenicity.


Subject(s)
Sindbis Virus/genetics , Africa , Animals , Culicidae/virology , Europe , Genotype , Israel , Phylogeny , RNA, Viral/genetics , Saudi Arabia
15.
Nat Med ; 13(4): 498-503, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17351627

ABSTRACT

Ferritin, the iron storage protein, was recently suggested to be a candidate reporter for the detection of gene expression by magnetic resonance imaging (MRI). Here we report the generation of TET:EGFP-HAferritin (tet-hfer) transgenic mice, in which tissue-specific inducible transcriptional regulation of expression of the heavy chain of ferritin could be detected in vivo by MRI. We show organ specificity by mating the tet-hfer mice with transgenic mice expressing tetracycline transactivator (tTA) in liver hepatocytes and in vascular endothelial cells. Tetracycline-regulated overexpression of ferritin resulted in specific alterations of the transverse relaxation rate (R(2)) of water. Transgene-dependent changes in R(2) were detectable by MRI in adult mice, and we also found fetal developmental induction of transgene expression in utero. Thus, the tet-hfer MRI reporter mice provide a new transgenic mouse platform for in vivo molecular imaging of reporter gene expression by MRI during both embryonic and adult life.


Subject(s)
Ferritins/metabolism , Gene Expression Regulation/physiology , Magnetic Resonance Imaging/methods , Animals , Base Sequence , Blotting, Western , Embryo, Mammalian/metabolism , Endothelial Cells/metabolism , Ferritins/genetics , Gene Expression Regulation/drug effects , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hepatocytes/metabolism , Mice , Mice, Transgenic , Molecular Sequence Data , Tetracycline/metabolism , Tetracycline/pharmacology
16.
Vaccines (Basel) ; 12(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38793742

ABSTRACT

The emergence of rapidly spreading variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) poses a major challenge to vaccines' protective efficacy. Intramuscular (IM) vaccine administration induces short-lived immunity but does not prevent infection and transmission. New vaccination strategies are needed to extend the longevity of vaccine protection, induce mucosal and systemic immunity and prevent viral transmission. The intranasal (IN) administration of the VSV-ΔG-spike vaccine candidate directly to mucosal surfaces yielded superior mucosal and systemic immunity at lower vaccine doses. Compared to IM vaccination in the K18-hACE2 model, IN vaccination preferentially induced mucosal IgA and T-cells, reduced the viral load at the site of infection, and ameliorated disease-associated brain gene expression. IN vaccination was protective even one year after administration. As most of the world population has been vaccinated by IM injection, we demonstrate the potential of a heterologous IM + IN vaccination regimen to induce mucosal immunity while maintaining systemic immunity. Furthermore, the IM + IN regimen prevented virus transmission in a golden Syrian hamster co-caging model. Taken together, we show that IN vaccination with VSV-ΔG-spike, either as a homologous IN + IN regimen or as a boost following IM vaccination, has a favorable potential over IM vaccination in inducing efficient mucosal immunity, long-term protection and preventing virus transmission.

17.
Nat Commun ; 15(1): 3265, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627363

ABSTRACT

The eradication of smallpox was officially declared by the WHO in 1980, leading to discontinuation of the vaccination campaign against the virus. Consequently, immunity against smallpox and related orthopoxviruses like Monkeypox virus gradually declines, highlighting the need for efficient countermeasures not only for the prevention, but also for the treatment of already exposed individuals. We have recently developed human-like monoclonal antibodies (mAbs) from vaccinia virus-immunized non-human primates. Two mAbs, MV33 and EV42, targeting the two infectious forms of the virus, were selected for in vivo evaluation, based on their in vitro neutralization potency. A single dose of either MV33 or EV42 administered three days post-infection (dpi) to BALB/c female mice provides full protection against lethal ectromelia virus challenge. Importantly, a combination of both mAbs confers full protection even when provided five dpi. Whole-body bioimaging and viral load analysis reveal that combination of the two mAbs allows for faster and more efficient clearance of the virus from target organs compared to either MV33 or EV42 separately. The combined mAbs treatment further confers post-exposure protection against the currently circulating Monkeypox virus in Cast/EiJ female mice, highlighting their therapeutic potential against other orthopoxviruses.


Subject(s)
Orthopoxvirus , Poxviridae Infections , Smallpox , Vaccinia , Humans , Female , Animals , Mice , Antibodies, Monoclonal , Poxviridae Infections/prevention & control , Vaccinia virus , Antibodies, Viral
18.
Virol J ; 10: 229, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23842430

ABSTRACT

Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104-120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope's critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox.


Subject(s)
Cowpox virus/immunology , Ectromelia virus/immunology , Ectromelia, Infectious/prevention & control , Membrane Glycoproteins/immunology , Vaccinia virus/immunology , Vaccinia/prevention & control , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Adaptive Immunity , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Disease Models, Animal , Drug Carriers , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Female , Genetic Variation , Genetic Vectors , Membrane Glycoproteins/genetics , Mice , Mice, Inbred BALB C , Sindbis Virus/genetics , Viral Envelope Proteins/genetics , Viral Vaccines/administration & dosage
19.
iScience ; 26(2): 105957, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36687315

ABSTRACT

Monkeypox virus (MPXV) resides in two forms; mature and enveloped, and depending on it, distinct proteins are displayed on the viral surface. Here, we expressed two MPXV antigens from the mature, and one from the enveloped form, and tested their reactivity to sera of 11 MPXV recoverees while comparing to sera from recently and past vaccinated individuals. 8 out of 11 recoverees exhibited detectable neutralization levels against Vaccinia Lister. Sera from all recoverees bound strongly to A35R and H3L antigens. Moreover, the responses to A35R were significantly higher within the recoverees compared to both recently and past vaccinated donors. Lastly, A35R- and H3L-specific IgG+ B cells ranging from 0.03-0.46% and 0.11-0.36%, respectively, were detected in all recoverees (A35R), and in 9 out of 11 recoverees (H3L). Therefore, A35R and H3L represent MPXV immune targets and could be used in a heat-inactivated serological ELISA for the identification of recent MPXV infection.

20.
Brain Commun ; 5(3): fcad086, 2023.
Article in English | MEDLINE | ID: mdl-37168733

ABSTRACT

Virus-induced CNS diseases impose a considerable human health burden worldwide. For many viral CNS infections, neither antiviral drugs nor vaccines are available. In this study, we examined whether the synthesis of glycosphingolipids, major membrane lipid constituents, could be used to establish an antiviral therapeutic target. We found that neuroinvasive Sindbis virus altered the sphingolipid levels early after infection in vitro and increased the levels of gangliosides GA1 and GM1 in the sera of infected mice. The alteration in the sphingolipid levels appears to play a role in neuroinvasive Sindbis virus replication, as treating infected cells with UDP-glucose ceramide glucosyltransferase (UGCG) inhibitors reduced the replication rate. Moreover, the UGCG inhibitor GZ-161 increased the survival rates of Sindbis-infected mice, most likely by reducing the detrimental immune response activated by sphingolipids in the brains of Sindbis virus-infected mice. These findings suggest a role for glycosphingolipids in the host immune response against neuroinvasive Sindbis virus and suggest that UGCG inhibitors should be further examined as antiviral therapeutics for viral infections of the CNS.

SELECTION OF CITATIONS
SEARCH DETAIL