Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Annu Rev Immunol ; 34: 93-119, 2016 05 20.
Article in English | MEDLINE | ID: mdl-26735697

ABSTRACT

The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow.


Subject(s)
Bone Marrow Cells/physiology , Dendritic Cells/physiology , Gene Expression Regulation , Immunity, Cellular , Animals , Cell Differentiation , Cell Lineage , Gene Expression Profiling , Gene Regulatory Networks , Humans , Immunity, Cellular/genetics , Mice , Transcriptional Activation
2.
Nat Immunol ; 20(9): 1174-1185, 2019 09.
Article in English | MEDLINE | ID: mdl-31406377

ABSTRACT

Classical type 1 dendritic cells (cDC1s) are required for antiviral and antitumor immunity, which necessitates an understanding of their development. Development of the cDC1 progenitor requires an E-protein-dependent enhancer located 41 kilobases downstream of the transcription start site of the transcription factor Irf8 (+41-kb Irf8 enhancer), but its maturation instead requires the Batf3-dependent +32-kb Irf8 enhancer. To understand this switch, we performed single-cell RNA sequencing of the common dendritic cell progenitor (CDP) and identified a cluster of cells that expressed transcription factors that influence cDC1 development, such as Nfil3, Id2 and Zeb2. Genetic epistasis among these factors revealed that Nfil3 expression is required for the transition from Zeb2hi and Id2lo CDPs to Zeb2lo and Id2hi CDPs, which represent the earliest committed cDC1 progenitors. This genetic circuit blocks E-protein activity to exclude plasmacytoid dendritic cell potential and explains the switch in Irf8 enhancer usage during cDC1 development.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Dendritic Cells/cytology , Enhancer Elements, Genetic/genetics , Inhibitor of Differentiation Protein 2/metabolism , Interferon Regulatory Factors/metabolism , Zinc Finger E-box Binding Homeobox 2/metabolism , Animals , Cell Differentiation/immunology , Cells, Cultured , Gene Expression Regulation, Developmental/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Repressor Proteins/metabolism , Stem Cells/cytology
3.
Nat Immunol ; 20(9): 1161-1173, 2019 09.
Article in English | MEDLINE | ID: mdl-31406378

ABSTRACT

Induction of the transcription factor Irf8 in the common dendritic cell progenitor (CDP) is required for classical type 1 dendritic cell (cDC1) fate specification, but the mechanisms controlling this induction are unclear. In the present study Irf8 enhancers were identified via chromatin profiling of dendritic cells and CRISPR/Cas9 genome editing was used to assess their roles in Irf8 regulation. An enhancer 32 kilobases (kb) downstream of the Irf8 transcriptional start site (+32-kb Irf8) that was active in mature cDC1s was required for the development of this lineage, but not for its specification. Instead, a +41-kb Irf8 enhancer, previously thought to be active only in plasmacytoid dendritic cells, was found to also be transiently accessible in cDC1 progenitors, and deleting this enhancer prevented the induction of Irf8 in CDPs and abolished cDC1 specification. Thus, cryptic activation of the +41-kb Irf8 enhancer in dendritic cell progenitors is responsible for cDC1 fate specification.


Subject(s)
Dendritic Cells/cytology , Enhancer Elements, Genetic/genetics , Interferon Regulatory Factors/metabolism , Macrophages/cytology , Monocytes/cytology , Animals , CRISPR-Cas Systems/genetics , Cell Differentiation , Cell Lineage , Dendritic Cells/immunology , Gene Expression Regulation , Interferon Regulatory Factors/genetics , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Stem Cells/cytology , Tumor Cells, Cultured
4.
Nat Immunol ; 18(5): 563-572, 2017 05.
Article in English | MEDLINE | ID: mdl-28346410

ABSTRACT

Variable strengths of signaling via the T cell antigen receptor (TCR) can produce divergent outcomes, but the mechanism of this remains obscure. The abundance of the transcription factor IRF4 increases with TCR signal strength, but how this would induce distinct types of responses is unclear. We compared the expression of genes in the TH2 subset of helper T cells to enhancer occupancy by the BATF-IRF4 transcription factor complex at varying strengths of TCR stimulation. Genes dependent on BATF-IRF4 clustered into groups with distinct TCR sensitivities. Enhancers exhibited a spectrum of occupancy by the BATF-IRF4 ternary complex that correlated with the sensitivity of gene expression to TCR signal strength. DNA sequences immediately flanking the previously defined AICE motif controlled the affinity of BATF-IRF4 for direct binding to DNA. Analysis by the chromatin immunoprecipitation-exonuclease (ChIP-exo) method allowed the identification of a previously unknown high-affinity AICE2 motif at a human single-nucleotide polymorphism (SNP) of the gene encoding the immunomodulatory receptor CTLA-4 that was associated with resistance to autoimmunity. Thus, the affinity of different enhancers for the BATF-IRF4 complex might underlie divergent signaling outcomes in response to various strengths of TCR signaling.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , CTLA-4 Antigen/genetics , Enhancer Elements, Genetic/genetics , Interferon Regulatory Factors/metabolism , Multiprotein Complexes/metabolism , Receptors, Antigen, T-Cell/metabolism , Th2 Cells/physiology , Animals , Autoimmunity/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Genetic Predisposition to Disease , Humans , Mice , Mice, 129 Strain , Mice, Inbred BALB C , Mice, Knockout , Polymorphism, Single Nucleotide , Protein Binding/genetics , Signal Transduction/genetics
5.
Immunity ; 53(4): 759-774.e9, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32795402

ABSTRACT

Development and function of conventional dendritic cell (cDC) subsets, cDC1 and cDC2, depend on transcription factors (TFs) IRF8 and IRF4, respectively. Since IRF8 and IRF4 can each interact with TF BATF3 at AP1-IRF composite elements (AICEs) and with TF PU.1 at Ets-IRF composite elements (EICEs), it is unclear how these factors exert divergent actions. Here, we determined the basis for distinct effects of IRF8 and IRF4 in cDC development. Genes expressed commonly by cDC1 and cDC2 used EICE-dependent enhancers that were redundantly activated by low amounts of either IRF4 or IRF8. By contrast, cDC1-specific genes relied on AICE-dependent enhancers, which required high IRF concentrations, but were activated by either IRF4 or IRF8. IRF8 was specifically required only by a minority of cDC1-specific genes, such as Xcr1, which could distinguish between IRF8 and IRF4 DNA-binding domains. Thus, these results explain how BATF3-dependent Irf8 autoactivation underlies emergence of the cDC1-specific transcriptional program.


Subject(s)
Dendritic Cells/metabolism , Enhancer Elements, Genetic/genetics , Interferon Regulatory Factors/genetics , Animals , Gene Expression Regulation/genetics , Mice , Mice, Inbred C57BL , Receptors, Chemokine/genetics , Transcription, Genetic/genetics
6.
Nat Immunol ; 16(7): 708-17, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26054719

ABSTRACT

The transcription factors Batf3 and IRF8 are required for the development of CD8α(+) conventional dendritic cells (cDCs), but the basis for their actions has remained unclear. Here we identified two progenitor cells positive for the transcription factor Zbtb46 that separately generated CD8α(+) cDCs and CD4(+) cDCs and arose directly from the common DC progenitor (CDP). Irf8 expression in CDPs required prior autoactivation of Irf8 that was dependent on the transcription factor PU.1. Specification of the clonogenic progenitor of CD8α(+) cDCs (the pre-CD8 DC) required IRF8 but not Batf3. However, after specification of pre-CD8 DCs, autoactivation of Irf8 became Batf3 dependent at a CD8α(+) cDC-specific enhancer with multiple transcription factor AP1-IRF composite elements (AICEs) within the Irf8 superenhancer. CDPs from Batf3(-/-) mice that were specified toward development into pre-CD8 DCs failed to complete their development into CD8α(+) cDCs due to decay of Irf8 autoactivation and diverted to the CD4(+) cDC lineage.


Subject(s)
Basic-Leucine Zipper Transcription Factors/immunology , Dendritic Cells/immunology , Interferon Regulatory Factors/immunology , Repressor Proteins/immunology , Stem Cells/immunology , Animals , Base Sequence , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , CD24 Antigen/immunology , CD24 Antigen/metabolism , CD8 Antigens/immunology , CD8 Antigens/metabolism , Cells, Cultured , Clone Cells/immunology , Clone Cells/metabolism , Dendritic Cells/metabolism , Flow Cytometry , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Protein Binding , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sequence Homology, Nucleic Acid , Stem Cells/metabolism , Transcriptome/genetics , Transcriptome/immunology
7.
Proc Natl Acad Sci U S A ; 121(27): e2320727121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38923989

ABSTRACT

Asthma is a widespread airway disorder where GATA3-dependent Type-2 helper T (Th2) cells and group 2 innate lymphoid cells (ILC2s) play vital roles. Asthma-associated single nucleotide polymorphisms (SNPs) are enriched in a region located 926-970 kb downstream from GATA3 in the 10p14 (hG900). However, it is unknown how hG900 affects the pathogenesis of allergic airway inflammation. To investigate the roles of the asthma-associated GATA3 enhancer region in experimental allergic airway inflammation, we first examined the correlation between GATA3 expression and the activation of the hG900 region was analyzed by flow cytometry and ChIP-qPCR. We found that The activation of enhancers in the hG900 region was strongly correlated to the levels of GATA3 in human peripheral T cell subsets. We next generated mice lacking the mG900 region (mG900KO mice) were generated by the CRISPR-Cas9 system, and the development and function of helper T cells and ILCs in mG900KO mice were analyzed in steady-state conditions and allergic airway inflammation induced by papain or house dust mite (HDM). The deletion of the mG900 did not affect the development of lymphocytes in steady-state conditions or allergic airway inflammation induced by papain. However, mG900KO mice exhibited reduced allergic inflammation and Th2 differentiation in the HDM-induced allergic airway inflammation. The analysis of the chromatin conformation around Gata3 by circular chromosome conformation capture coupled to high-throughput sequencing (4C-seq) revealed that the mG900 region interacted with the transcription start site of Gata3 with an influencing chromatin conformation in Th2 cells. These findings indicate that the mG900 region plays a pivotal role in Th2 differentiation and thus enhances allergic airway inflammation.


Subject(s)
Asthma , Cell Differentiation , Enhancer Elements, Genetic , GATA3 Transcription Factor , Th2 Cells , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Animals , Th2 Cells/immunology , Mice , Cell Differentiation/immunology , Asthma/immunology , Asthma/genetics , Asthma/pathology , Humans , Mice, Knockout , Inflammation/immunology , Inflammation/genetics , Hypersensitivity/immunology , Hypersensitivity/genetics , Polymorphism, Single Nucleotide , Mice, Inbred C57BL
9.
Immunity ; 42(5): 916-28, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25992862

ABSTRACT

The two major lineages of classical dendritic cells (cDCs) express and require either IRF8 or IRF4 transcription factors for their development and function. IRF8-dependent cDCs promote anti-viral and T-helper 1 (Th1) cell responses, whereas IRF4-expressing cDCs have been implicated in controlling both Th2 and Th17 cell responses. Here, we have provided evidence that Kruppel-like factor 4 (Klf4) is required in IRF4-expressing cDCs to promote Th2, but not Th17, cell responses in vivo. Conditional Klf4 deletion within cDCs impaired Th2 cell responses during Schistosoma mansoni infection, Schistosoma egg antigen (SEA) immunization, and house dust mite (HDM) challenge without affecting cytotoxic T lymphocyte (CTL), Th1 cell, or Th17 cell responses to herpes simplex virus, Toxoplasma gondii, and Citrobacter rodentium infections. Further, Klf4 deletion reduced IRF4 expression in pre-cDCs and resulted in selective loss of IRF4-expressing cDCs subsets in several tissues. These results indicate that Klf4 guides a transcriptional program promoting IRF4-expressing cDCs heterogeneity.


Subject(s)
Dendritic Cells/immunology , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Schistosomiasis mansoni/immunology , Th2 Cells/immunology , Animals , Antigens, Helminth/immunology , Asthma/immunology , Cells, Cultured , Dendritic Cells/metabolism , Disease Models, Animal , Enterobacteriaceae Infections/immunology , Gene Deletion , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Herpes Simplex/immunology , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Kruppel-Like Factor 4 , Mice , Mice, Inbred C57BL , Pyroglyphidae , Th2 Cells/cytology , Toxoplasmosis/immunology
10.
Biochem Biophys Res Commun ; 664: 9-19, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37130460

ABSTRACT

T follicular regulatory (Tfr) cells, a subset of CD4+ Foxp3+ regulatory T (Treg) cells, locate to the lymphoid follicle and germinal center (GC) and regulate antibody responses. Tfr cells express the functional molecules of follicular helper T (Tfh) cells, including CXCR5 and Bcl6. CD25- mature Tfr cells differentiate from CD25+ Treg cells through CD25+ immature Tfr cells. Others and we have shown that Achaete-scute complex homolog 2 (Ascl2) plays a role in Tfh cell development; however, the role of Ascl2 in the development of Tfr cells remains unclear. Here, we found that Ascl2 was highly and preferentially expressed in CD25+ Tfr cells and CD25- Tfr cells, and that the differentiation from CD25+ Tfr cells to CD25- Tfr cells was impaired by the absence of Ascl2. Furthermore, the forced Ascl2 expression in Treg cells downregulated CD25 expression and suppressed IL-2-induced phosphorylation of STAT5, which is known to suppress CD25- Tfr cell development. Finally, we found that the downregulation of CD25 by Ascl2 in Treg cells is independent of Bach2, which also regulates CD25 downregulation in CD25+ Tfr cells. These results suggest that Ascl2 plays a vital role in developing Tfr cells, possibly by downregulating CD25 expression in a Bach2-independent mechanism.


Subject(s)
T-Lymphocytes, Helper-Inducer , T-Lymphocytes, Regulatory , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation , Germinal Center , Animals , Mice
11.
Allergol Int ; 72(2): 194-200, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36585333

ABSTRACT

Asthma is characterized by increased airway hyperresponsiveness, reversible airflow limitation, and remodeling due to allergic airway inflammation. Asthma has been proposed to be classified into various phenotypes by cluster analyses integrating clinical information and laboratory data. Recently, asthma has been classified into two major endotypes, Type 2-high and Type 2-low asthma, and various subtypes based on the underlying molecular mechanisms. In Type 2-high asthma, Th2 cells, together with group 2 innate lymphoid cells (ILC2s), produce type 2 cytokines such as IL-4, IL-5, IL-9, and IL-13, which play crucial roles in causing airway inflammation. The roles of ILC2s in asthma pathogenesis have been analyzed primarily in murine models, demonstrating their importance not only in IL-33- or papain-induced innate asthma models but also in house dust mite (HDM)- or ovalbumin (OVA)-induced acquired asthma models evoked in an antigen-specific manner. Recently, evidence regarding the roles of ILC2s in human asthma is also accumulating. This minireview summarizes the roles of ILC2s in asthma, emphasizing human studies.


Subject(s)
Asthma , Immunity, Innate , Humans , Mice , Animals , Lymphocytes , Asthma/pathology , Lung/pathology , Cytokines , Inflammation/pathology , Disease Models, Animal , Th2 Cells/pathology
12.
Mod Rheumatol ; 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37522614

ABSTRACT

OBJECTIVE: Predicting the efficacy of biological disease-modifying anti-rhematic drugs (bDMARDs) is challenging. In this study, we aimed to explore markers that predict the efficacy of abatacept in rheumatoid arthritis (RA) patients. METHODS: Thirty RA patients receiving abatacept were recruited, and peripheral blood mononuclear cells (PBMCs) from the participants were subjected to DNA microarray analysis. The expression of CCR4, which was selected by the result of DNA microarray, was determined by flow cytometry in 16 newly diagnosed treatment-naïve RA patients. CCR4 expression on each helper T cell subset was also measured. RESULTS: CCR4 was upregulated in the abatacept responder. The expression levels of CCR4 were significantly correlated with the improvement of clinical disease activity index (CDAI). CCR4 expression was predominantly observed in CD4+ T cells in PBMCs. The percentage of CCR4-expressing CD4+ T cells was significantly higher in RA patients than in healthy individuals. Interestingly, Th17 and Treg cells expressed high levels of CCR4 compared to non-Th17-related helper T cells. CONCLUSION: CCR4 is a Th17- and Treg-related gene, and the high CCR4 expression in peripheral blood samples may predict the efficacy of abatacept in RA.

13.
Biochem Biophys Res Commun ; 629: 47-53, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36099784

ABSTRACT

A20 (Tnfaip3), a ubiquitin-editing enzyme, inhibits NF-κB signaling pathways in response to pro-inflammatory cytokines. Previous studies have proved the anti-inflammatory roles of A20 in various cell types, including T cells, B cells, dendritic cells, and intestinal epithelial cells. Moreover, recent studies have shown that A20 expressed in lung epithelial cells is required for LPS-induced protection from asthma. In humans, a single-nucleotide polymorphism in TNFAIP3 is associated with asthma risk. However, the role of A20 expressed in T cells in asthmatic responses has not been elucidated. We addressed this point by generating mice lacking A20 expression in T cells (CD4-CreA20 fl/fl mice). We found that house dust mite (HDM)-induced allergic airway inflammation, mucus production, airway hyperresponsiveness, and Th2 cytokine production were significantly exacerbated in CD4-CreA20 fl/fl mice compared with those in control A20 fl/fl mice. In vitro differentiation of Th2 cells but not of Th1 cells or Th17 cells was enhanced in CD4+ T cells by the absence of A20. Consistently, enforced expression of A20 inhibited the differentiation of Th2 cells but not of Th1 cells or Th17 cells. Notably, the expression of GATA3 was significantly enhanced in A20-deficient CD4+ T cells, and the enhanced GATA3 expression was partly canceled by IL-2 neutralization. These results suggest that A20 functions as a stabilizing factor maintaining GATA3 levels during the induction of Th2 cells to prevent excessive Th2 cell differentiation.


Subject(s)
Asthma , Th2 Cells , Animals , Mice , Anti-Inflammatory Agents/metabolism , Asthma/genetics , Asthma/metabolism , Cytokines/metabolism , Disease Models, Animal , Inflammation/metabolism , Interleukin-2/metabolism , Lipopolysaccharides/metabolism , NF-kappa B/metabolism , Pyroglyphidae , Th1 Cells/metabolism , Th17 Cells/metabolism , Th2 Cells/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3 , Ubiquitins/metabolism , Polymorphism, Single Nucleotide
14.
Allergol Int ; 71(4): 520-527, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35660131

ABSTRACT

BACKGROUND: Airway epithelial cells (AECs) play a crucial role in the induction and development of allergic inflammation through the development and activation of immune cells, including Th2 cells and ILC2s. Recent studies have revealed that STAT3 expressed in epithelial cells protects against pathogens and maintains homeostasis in the intestine. However, the roles of STAT3 in airway epithelium are poorly understood. Therefore, we sought to elucidate the roles of airway epithelial STAT3 in allergic airway inflammation. METHODS: Allergic airway inflammation was induced by intratracheal administration of house dust mite (HDM) extract in doxycycline-induced AEC-specific STAT3-deficient (STAT3-cKO) mice and their genetic control (STAT3-WT) mice. Airway inflammation was evaluated by flow cytometric analysis of bronchoalveolar lavage fluid cells and histological analysis of the lung. Purified airway epithelial cells were analyzed by quantitative PCR and RNA-sequencing (RNA-seq). RESULTS: HDM-induced airway inflammation was exacerbated in STAT3-cKO mice compared with STAT3-WT mice. RNA-seq analyses revealed that Scd1, coding stearoyl-CoA desaturase 1, was most significantly upregulated in HDM-treated STAT3-WT mice compared to HDM-treated STAT3-cKO mice. Notably, the administration of an SCD1 inhibitor exacerbated HDM-induced airway inflammation. AECs of HDM-treated STAT3-cKO mice and those of HDM-treated SCD1 inhibitor-injected mice shared 45 differentially expressed genes (DEGs). Gene enrichment analysis of the DEGs revealed that the enriched ontology clusters included fatty acid biosynthetic process and regulation of lipid biosynthetic process, suggesting the involvement of the STAT3-SCD1-lipid metabolism axis in suppressing allergic inflammation. CONCLUSIONS: STAT3 is crucial for suppressing HDM-induced allergic airway inflammation, possibly inducing SCD1 expression in AECs.


Subject(s)
Immunity, Innate , STAT3 Transcription Factor/metabolism , Stearoyl-CoA Desaturase/metabolism , Allergens , Animals , Disease Models, Animal , Doxycycline/metabolism , Fatty Acids/metabolism , Inflammation , Lipids , Lung/pathology , Lymphocytes , Mice , Pyroglyphidae , STAT3 Transcription Factor/genetics , Up-Regulation
15.
J Mol Cell Cardiol ; 159: 48-61, 2021 10.
Article in English | MEDLINE | ID: mdl-34144051

ABSTRACT

Ly6Clow macrophages promote scar formation and prevent early infarct expansion after myocardial infarction (MI). Although CD4+ T cells influence the regulation of Ly6Clow macrophages after MI, the mechanism remains largely unknown. Based on the hypothesis that some molecule(s) secreted by CD4+ T cells act on Ly6Clow macrophages, we searched for candidate molecules by focusing on cytokine receptors expressed on Ly6Clow macrophages. Comparing the transcriptome between Ly6Chigh macrophages and Ly6Clow macrophages harvested from the infarcted heart, we found that Ly6Clow macrophages highly expressed the receptor for interleukin (IL)-21, a pleiotropic cytokine which is produced by several types of CD4+ T cells, compared with Ly6Chigh macrophages. Indeed, CD4+ T cells harvested from the infarcted heart produce IL-21 upon stimulation. Importantly, the survival rate and cardiac function after MI were significantly improved in IL-21-deficient (il21-/-) mice compared with those in wild-type (WT) mice. Transcriptome analysis of infarcted heart tissue from WT mice and il21-/- mice at 5 days after MI demonstrated that inflammation is persistent in WT mice compared with il21-/- mice. Consistent with the transcriptome analysis, the number of neutrophils and matrix metalloproteinase (MMP)-9 expression were significantly decreased, whereas the number of Ly6Clow macrophages and MMP-12 expression were significantly increased in il21-/- mice. In addition, collagen deposition and the number of myofibroblasts in the infarcted area were significantly increased in il21-/- mice. Consistently, IL-21 enhanced the apoptosis of Ly6Clow macrophages. Finally, administration of neutralizing IL-21 receptor Fc protein increased the number of Ly6Clow macrophages in the infarcted heart and improved the survival and cardiac function after MI. Thus, IL-21 decreases the survival after MI, possibly through the delay of wound healing by inducing the apoptosis of Ly6Clow macrophages.


Subject(s)
Interleukins/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Wound Healing/physiology , Animals , Cicatrix/metabolism , Inflammation/metabolism , Macrophages/metabolism , Male , Matrix Metalloproteinase 12/metabolism , Mice , Mice, Inbred C57BL , Myofibroblasts/metabolism , Ventricular Remodeling/physiology
16.
Immunol Rev ; 278(1): 145-161, 2017 07.
Article in English | MEDLINE | ID: mdl-28658544

ABSTRACT

Allergic asthma is characterized by eosinophilic airway inflammation, mucus hyperproduction, and airway hyperreactivity, causing reversible airway obstruction. Accumulating evidence indicates that antigen-specific Th2 cells and their cytokines such as IL-4, IL-5, and IL-13 orchestrate these pathognomonic features of asthma. However, over the past decade, the understanding of asthma pathogenesis has made a significant shift from a Th2 cell-dependent, IgE-mediated disease to a more complicated heterogeneous disease. Recent studies clearly show that not only Th2 cytokines but also other T cell-related cytokines such as IL-17A and IL-22 as well as epithelial cell cytokines such as IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) are involved in the pathogenesis of asthma. In this review, we focus on the roles of these players beyond Th2 pathways in the pathogenesis of asthma.


Subject(s)
Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/metabolism , Signal Transduction , Th2 Cells/immunology , Th2 Cells/metabolism , Animals , Cytokines/metabolism , Disease Models, Animal , Humans , Immunity, Innate , Respiratory Hypersensitivity/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
17.
J Allergy Clin Immunol ; 144(3): 698-709.e9, 2019 09.
Article in English | MEDLINE | ID: mdl-31125592

ABSTRACT

BACKGROUND: One of the pathognomonic features of asthma is epithelial hyperproduction of mucus, which is composed of a series of glycoproteins; however, it remains unclear how glycosylation is induced in lung epithelial cells from asthmatic patients and how glycan residues play a role in the pathogenesis of asthma. OBJECTIVE: The objective of this study was to explore comprehensive epithelial glycosylation status induced by allergic inflammation and reveal its possible role in the pathogenesis of asthma. METHODS: We evaluated the glycosylation status of lung epithelium using a lectin microarray. We next searched for molecular mechanisms underlying epithelial glycosylation. We also examined whether epithelial glycosylation is involved in induction of allergic inflammation. RESULTS: On allergen inhalation, lung epithelial cells were heavily α(1,2)fucosylated by fucosyltransferase 2 (Fut2), which was induced by the IL-13-signal transducer and activator of transcription 6 pathway. Importantly, Fut2-deficient (Fut2-/-) mice, which lacked lung epithelial fucosylation, showed significantly attenuated eosinophilic inflammation and airway hyperresponsiveness in house dust mite (HDM)-induced asthma models. Proteome analyses and immunostaining of the HDM-challenged lung identified that complement C3 was accumulated in fucosylated areas. Indeed, Fut2-/- mice showed significantly reduced levels of C3a and impaired accumulation of C3a receptor-expressing monocyte-derived dendritic cells in the lung on HDM challenge. CONCLUSION: Fut2 induces epithelial fucosylation and exacerbates airway inflammation in asthmatic patients in part through C3a production and monocyte-derived dendritic cell accumulation in the lung.


Subject(s)
Asthma/immunology , Epithelial Cells/immunology , Fucosyltransferases/immunology , Lung/immunology , Respiratory Mucosa/immunology , Allergens/immunology , Animals , Complement C3/immunology , Disease Models, Animal , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Eosinophilia/immunology , Pyroglyphidae/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Galactoside 2-alpha-L-fucosyltransferase
18.
Proc Natl Acad Sci U S A ; 113(51): 14775-14780, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27930303

ABSTRACT

Dendritic cells (DCs) and monocytes develop from a series of bone-marrow-resident progenitors in which lineage potential is regulated by distinct transcription factors. Zeb2 is an E-box-binding protein associated with epithelial-mesenchymal transition and is widely expressed among hematopoietic lineages. Previously, we observed that Zeb2 expression is differentially regulated in progenitors committed to classical DC (cDC) subsets in vivo. Using systems for inducible gene deletion, we uncover a requirement for Zeb2 in the development of Ly-6Chi monocytes but not neutrophils, and we show a corresponding requirement for Zeb2 in expression of the M-CSF receptor in the bone marrow. In addition, we confirm a requirement for Zeb2 in development of plasmacytoid DCs but find that Zeb2 is not required for cDC2 development. Instead, Zeb2 may act to repress cDC1 progenitor specification in the context of inflammatory signals.


Subject(s)
Dendritic Cells/cytology , Gene Expression Regulation , Monocytes/cytology , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/physiology , Animals , Bone Marrow/metabolism , CD8-Positive T-Lymphocytes/cytology , Cell Lineage , Cytoplasm/metabolism , Female , Flow Cytometry , Gene Deletion , Gene Expression Profiling , Inflammation , Integrases/metabolism , Male , Mice , Neutrophils/cytology , Neutrophils/metabolism
20.
Proc Natl Acad Sci U S A ; 110(13): 5121-6, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23479601

ABSTRACT

Although innate immune responses are necessary for the initiation of acquired immune responses and the subsequent successful elimination of pathogens, excessive responses occasionally result in lethal endotoxic shock accompanied by a cytokine storm. B and T lymphocyte attenuator (BTLA), a coinhibitory receptor with similarities to cytotoxic T-lymphocyte antigen (CTLA)-4 and programmed death (PD)-1, is expressed in not only B and T cells but also dendritic cells (DCs) and macrophages (Mϕs). Recently, several studies have reported that BTLA-deficient (BTLA(-/-)) mice show enhanced pathogen clearance compared with WT mice in early phase of infections. However, the roles of BTLA expressed on innate cells in overwhelming and uncontrolled immune responses remain unclear. Here, we found that BTLA(-/-) mice were highly susceptible to LPS-induced endotoxic shock. LPS-induced TNF-α and IL-12 production in DCs and Mϕs was significantly enhanced in BTLA(-/-) mice. BTLA(-/-) DCs also produced high levels of TNF-α on stimulation with Pam3CSK4 but not poly(I:C) or CpG, suggesting that BTLA functions as an inhibitory molecule on Toll-like receptor signaling at cell surface but not endosome. Moreover, BTLA(-/-) DCs showed enhanced MyD88- and toll/IL-1R domain-containing adaptor inducing IFN (TRIF)-dependent signaling on LPS stimulation, which is associated with impaired accumulation of Src homology 2-containing protein tyrosine phosphatase in lipid rafts. Finally, we found that an agonistic anti-BTLA antibody rescued mice from LPS-induced endotoxic shock, even if the antibody was given to mice that had developed a sign of endotoxic shock. These results suggest that BTLA directly inhibits LPS responses in DCs and Mϕs and that agonistic agents for BTLA might have therapeutic potential for LPS-induced endotoxic shock.


Subject(s)
Dendritic Cells/immunology , Immunity, Innate/drug effects , Lipopolysaccharides/toxicity , Macrophages/immunology , Receptors, Immunologic/immunology , Shock, Septic/immunology , Signal Transduction/drug effects , Toll-Like Receptor 4/immunology , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/immunology , Animals , Dendritic Cells/pathology , Endosomes/genetics , Endosomes/immunology , Endosomes/pathology , Immunity, Innate/genetics , Immunity, Innate/immunology , Interferon Inducers/pharmacology , Interleukin-12/genetics , Interleukin-12/immunology , Lipopeptides/pharmacology , Macrophages/pathology , Membrane Microdomains/genetics , Membrane Microdomains/immunology , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Poly I-C/pharmacology , Receptors, Immunologic/genetics , Shock, Septic/chemically induced , Shock, Septic/genetics , Shock, Septic/pathology , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL