Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 15(3): 248-57, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24441789

ABSTRACT

The role of the unfolded protein response (UPR) and endoplasmic reticulum (ER) stress in homeostasis of the immune system is incompletely understood. Here we found that dendritic cells (DCs) constitutively activated the UPR sensor IRE-1α and its target, the transcription factor XBP-1, in the absence of ER stress. Loss of XBP-1 in CD11c+ cells led to defects in phenotype, ER homeostasis and antigen presentation by CD8α+ conventional DCs, yet the closely related CD11b+ DCs were unaffected. Whereas the dysregulated ER in XBP-1-deficient DCs resulted from loss of XBP-1 transcriptional activity, the phenotypic and functional defects resulted from regulated IRE-1α-dependent degradation (RIDD) of mRNAs, including those encoding CD18 integrins and components of the major histocompatibility complex (MHC) class I machinery. Thus, a precisely regulated feedback circuit involving IRE-1α and XBP-1 controls the homeostasis of CD8α+ conventional DCs.


Subject(s)
Cross-Priming/immunology , DNA-Binding Proteins/immunology , Dendritic Cells/immunology , Endoribonucleases/immunology , Protein Serine-Threonine Kinases/immunology , Protein Unfolding , Transcription Factors/immunology , Unfolded Protein Response/immunology , Animals , Antigen Presentation/immunology , CD8 Antigens/immunology , CD8 Antigens/metabolism , DNA-Binding Proteins/metabolism , Dendritic Cells/metabolism , Endoplasmic Reticulum/immunology , Endoribonucleases/metabolism , Feedback, Physiological/physiology , Homeostasis/immunology , Immunoblotting , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron , Oligonucleotide Array Sequence Analysis , Protein Serine-Threonine Kinases/metabolism , Regulatory Factor X Transcription Factors , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/metabolism , X-Box Binding Protein 1
2.
Article in English | MEDLINE | ID: mdl-38593442

ABSTRACT

Heightened unfolded protein responses (UPRs) are associated with the risk for asthma, including severe asthma. Treatment-refractory severe asthma manifests a neutrophilic phenotype with TH17 responses. However, how UPRs participate in the deregulation of TH17 cells leading to neutrophilic asthma remains elusive. This study found that the UPR sensor IRE1 is induced in the murine lung with fungal asthma and is highly expressed in TH17 cells relative to naïve CD4+ T cells. Cytokine (e.g. IL-23) signals induce the IRE1-XBP1s axis in a JAK2-dependent manner. This noncanonical activation of the IRE1-XBP1s pathway promotes UPRs and cytokine secretion by both human and mouse TH17 cells. Ern1 (encoding IRE1)-deficiency decreases the expression of ER stress factors and impairs the differentiation and cytokine secretion of TH17 cells. Genetic ablation of Ern1 leads to alleviated TH17 responses and airway neutrophilia in a fungal airway inflammation model. Consistently, IL-23 activates the JAK2-IRE1-XBP1s pathway in vivo and enhances TH17 responses and neutrophilic infiltration into the airway. Taken together, our data indicate that IRE1, noncanonically activated by cytokine signals, promotes neutrophilic airway inflammation through the UPR-mediated secretory function of TH17 cells. The findings provide a novel insight into the fundamental understanding of IRE1 in TH17-biased TH2-low asthma.

3.
EMBO J ; 38(15): e100999, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31368599

ABSTRACT

Unresolved endoplasmic reticulum (ER) stress shifts the unfolded protein response signaling from cell survival to cell death, although the switching mechanism remains unclear. Here, we report that mitochondrial ubiquitin ligase (MITOL/MARCH5) inhibits ER stress-induced apoptosis through ubiquitylation of IRE1α at the mitochondria-associated ER membrane (MAM). MITOL promotes K63-linked chain ubiquitination of IRE1α at lysine 481 (K481), thereby preventing hyper-oligomerization of IRE1α and regulated IRE1α-dependent decay (RIDD). Therefore, under ER stress, MITOL depletion or the IRE1α mutant (K481R) allows for IRE1α hyper-oligomerization and enhances RIDD activity, resulting in apoptosis. Similarly, in the spinal cord of MITOL-deficient mice, ER stress enhances RIDD activity and subsequent apoptosis. Notably, unresolved ER stress attenuates IRE1α ubiquitylation, suggesting that this directs the apoptotic switch of IRE1α signaling. Our findings suggest that mitochondria regulate cell fate under ER stress through IRE1α ubiquitylation by MITOL at the MAM.


Subject(s)
Endoplasmic Reticulum/metabolism , Endoribonucleases/chemistry , Endoribonucleases/metabolism , Membrane Proteins/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis , COS Cells , Cell Line , Chlorocebus aethiops , Endoplasmic Reticulum Stress , Endoribonucleases/genetics , HEK293 Cells , HeLa Cells , Humans , Lysine/metabolism , Membrane Proteins/genetics , Mice , Mitochondria/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitination
4.
PLoS Biol ; 18(6): e3000687, 2020 06.
Article in English | MEDLINE | ID: mdl-32520957

ABSTRACT

In the tumor microenvironment, local immune dysregulation is driven in part by macrophages and dendritic cells that are polarized to a mixed proinflammatory/immune-suppressive phenotype. The unfolded protein response (UPR) is emerging as the possible origin of these events. Here we report that the inositol-requiring enzyme 1 (IRE1α) branch of the UPR is directly involved in the polarization of macrophages in vitro and in vivo, including the up-regulation of interleukin 6 (IL-6), IL-23, Arginase1, as well as surface expression of CD86 and programmed death ligand 1 (PD-L1). Macrophages in which the IRE1α/X-box binding protein 1 (Xbp1) axis is blocked pharmacologically or deleted genetically have significantly reduced polarization and CD86 and PD-L1 expression, which was induced independent of IFNγ signaling, suggesting a novel mechanism in PD-L1 regulation in macrophages. Mice with IRE1α- but not Xbp1-deficient macrophages showed greater survival than controls when implanted with B16.F10 melanoma cells. Remarkably, we found a significant association between the IRE1α gene signature and CD274 gene expression in tumor-infiltrating macrophages in humans. RNA sequencing (RNASeq) analysis showed that bone marrow-derived macrophages with IRE1α deletion lose the integrity of the gene connectivity characteristic of regulated IRE1α-dependent decay (RIDD) and the ability to activate CD274 gene expression. Thus, the IRE1α/Xbp1 axis drives the polarization of macrophages in the tumor microenvironment initiating a complex immune dysregulation leading to failure of local immune surveillance.


Subject(s)
B7-H1 Antigen/metabolism , Cell Polarity , Endoribonucleases/metabolism , Macrophages/metabolism , Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Animals , CD11b Antigen/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Gene Expression Regulation, Neoplastic , Humans , Inflammation/pathology , Linear Models , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/metabolism , Neoplasms/metabolism , Phenotype , Unfolded Protein Response , X-Box Binding Protein 1/metabolism
5.
Int J Mol Sci ; 24(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37373353

ABSTRACT

Type 1 conventional dendritic cells (cDC1s) are leukocytes competent to coordinate antiviral immunity, and thus, the intracellular mechanisms controlling cDC1 function are a matter of intense research. The unfolded protein response (UPR) sensor IRE1 and its associated transcription factor XBP1s control relevant functional aspects in cDC1s including antigen cross-presentation and survival. However, most studies connecting IRE1 and cDC1 function are undertaken in vivo. Thus, the aim of this work is to elucidate whether IRE1 RNase activity can also be modeled in cDC1s differentiated in vitro and reveal the functional consequences of such activation in cells stimulated with viral components. Our data show that cultures of optimally differentiated cDC1s recapitulate several features of IRE1 activation noticed in in vivo counterparts and identify the viral analog Poly(I:C) as a potent UPR inducer in the lineage. In vitro differentiated cDC1s display constitutive IRE1 RNase activity and hyperactivate IRE1 RNase upon genetic deletion of XBP1s, which regulates production of the proinflammatory cytokines IL-12p40, TNF-α and IL-6, Ifna and Ifnb upon Poly(I:C) stimulation. Our results show that a strict regulation of the IRE1/XBP1s axis regulates cDC1 activation to viral agonists, expanding the scope of this UPR branch in potential DC-based therapies.


Subject(s)
Protein Serine-Threonine Kinases , Unfolded Protein Response , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Gene Expression Regulation , Transcription Factors/metabolism , Ribonucleases/metabolism
6.
Hum Mol Genet ; 29(8): 1310-1318, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32196553

ABSTRACT

Rhodopsin misfolding caused by the P23H mutation is a major cause of autosomal dominant retinitis pigmentosa (adRP). To date, there are no effective treatments for adRP. The BiP co-chaperone and reductase ERdj5 (DNAJC10) is part of the endoplasmic reticulum (ER) quality control machinery, and previous studies have shown that overexpression of ERdj5 in vitro enhanced the degradation of P23H rhodopsin, whereas knockdown of ERdj5 increased P23H rhodopsin ER retention and aggregation. Here, we investigated the role of ERdj5 in photoreceptor homeostasis in vivo by using an Erdj5 knockout mouse crossed with the P23H knock-in mouse and by adeno-associated viral (AAV) vector-mediated gene augmentation of ERdj5 in P23H-3 rats. Electroretinogram (ERG) and optical coherence tomography of Erdj5-/- and P23H+/-:Erdj5-/- mice showed no effect of ERdj5 ablation on retinal function or photoreceptor survival. Rhodopsin levels and localization were similar to those of control animals at a range of time points. By contrast, when AAV2/8-ERdj5-HA was subretinally injected into P23H-3 rats, analysis of the full-field ERG suggested that overexpression of ERdj5 reduced visual function loss 10 weeks post-injection (PI). This correlated with a significant preservation of photoreceptor cells at 4 and 10 weeks PI. Assessment of the outer nuclear layer (ONL) morphology showed preserved ONL thickness and reduced rhodopsin retention in the ONL in the injected superior retina. Overall, these data suggest that manipulation of the ER quality control and ER-associated degradation factors to promote mutant protein degradation could be beneficial for the treatment of adRP caused by mutant rhodopsin.


Subject(s)
HSP40 Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Retinitis Pigmentosa/genetics , Rhodopsin/genetics , Animals , Disease Models, Animal , Electroretinography , Endoplasmic Reticulum/genetics , Gene Knock-In Techniques , Mice , Mice, Knockout , Mutation/genetics , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Rats , Retina/metabolism , Retina/pathology , Retinitis Pigmentosa/pathology , Rhodopsin/metabolism , Transfection
7.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36499738

ABSTRACT

Methylmercury (MeHg), an environmental toxicant, induces neuronal cell death and injures specific areas of the brain. MeHg is known to induce oxidative and endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) pathway has a dual nature in that it regulates and protects cells from an overload of improperly folded proteins in the ER, whereas excessively stressed cells are eliminated by apoptosis. Oxidative stress/ER stress induced by methylmercury exposure may tilt the UPR toward apoptosis, but there is little in vivo evidence of a direct link to actual neuronal cell death. Here, by using the ER stress-activated indicator (ERAI) system, we investigated the time course signaling alterations of UPR in vivo in the most affected areas, the somatosensory cortex and striatum. In the ERAI-Venus transgenic mice exposed to MeHg (30 or 50 ppm in drinking water), the ERAI signal, which indicates the activation of the cytoprotective pathway of the UPR, was only transiently enhanced, whereas the apoptotic pathway of the UPR was persistently enhanced. Furthermore, detailed analysis following the time course showed that MeHg-induced apoptosis is strongly associated with alterations in UPR signaling. Our results suggest that UPR modulation could be a therapeutic target for treating neuropathy.


Subject(s)
Methylmercury Compounds , Unfolded Protein Response , Mice , Animals , Endoplasmic Reticulum Stress , Cell Death , Signal Transduction , Apoptosis , Methylmercury Compounds/toxicity , Mice, Transgenic , Brain
8.
Blood ; 134(19): 1670-1682, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31533918

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) can subdue inflammation. In mice with acute graft-versus-host disease (GVHD), donor MDSC infusion enhances survival that is only partial and transient because of MDSC inflammasome activation early posttransfer, resulting in differentiation and loss of suppressor function. Here we demonstrate that conditioning regimen-induced adenosine triphosphate (ATP) release is a primary driver of MDSC dysfunction through ATP receptor (P2x7R) engagement and NLR pyrin family domain 3 (NLRP3) inflammasome activation. P2x7R or NLRP3 knockout (KO) donor MDSCs provided significantly higher survival than wild-type (WT) MDSCs. Although in vivo pharmacologic targeting of NLRP3 or P2x7R promoted recipient survival, indicating in vivo biologic effects, no synergistic survival advantage was seen when combined with MDSCs. Because activated inflammasomes release mature interleukin-1ß (IL-1ß), we expected that IL-1ß KO donor MDSCs would be superior in subverting GVHD, but such MDSCs proved inferior relative to WT. IL-1ß release and IL-1 receptor expression was required for optimal MDSC function, and exogenous IL-1ß added to suppression assays that included MDSCs increased suppressor potency. These data indicate that prolonged systemic NLRP3 inflammasome inhibition and decreased IL-1ß could diminish survival in GVHD. However, loss of inflammasome activation and IL-1ß release restricted to MDSCs rather than systemic inhibition allowed non-MDSC IL-1ß signaling, improving survival. Extracellular ATP catalysis with peritransplant apyrase administered into the peritoneum, the ATP release site, synergized with WT MDSCs, as did regulatory T-cell infusion, which we showed reduced but did not eliminate MDSC inflammasome activation, as assessed with a novel inflammasome reporter strain. These findings will inform future clinical using MDSCs to decrease alloresponses in inflammatory environments.


Subject(s)
Adenosine Triphosphate/metabolism , Graft vs Host Disease/immunology , Inflammasomes/immunology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/transplantation , Animals , Female , Mice , Mice, Knockout
9.
Arch Toxicol ; 95(4): 1241-1250, 2021 04.
Article in English | MEDLINE | ID: mdl-33454823

ABSTRACT

Methylmercury (MeHg), an environmental toxicant, induces neuronal cell death and injures a specific area of the brain. MeHg-mediated neurotoxicity is believed to be caused by oxidative stress and endoplasmic reticulum (ER) stress but the mechanism by which those stresses lead to neuronal loss is unclear. Here, by utilizing the ER stress-activated indicator (ERAI) system, we investigated the signaling alterations in the unfolded protein response (UPR) prior to neuronal apoptosis in the mouse brain. In ERAI transgenic mice exposed to MeHg (25 mg/kg, S.C.), the ERAI signal, which indicates activation of the cytoprotective pathway of the UPR, was detected in the brain. Interestingly, detailed ex vivo analysis showed that the ERAI signal was localized predominantly in neurons. Time course analysis of MeHg exposure (30 ppm in drinking water) showed that whereas the ERAI signal was gradually attenuated at the late phase after increasing at the early phase, activation of the apoptotic pathway of the UPR was enhanced in proportion to the exposure time. These results suggest that MeHg induces not only ER stress but also neuronal cell death via a UPR shift. UPR modulation could be a therapeutic target for treating neuropathy caused by electrophiles similar to MeHg.


Subject(s)
Brain/drug effects , Endoplasmic Reticulum Stress/drug effects , Methylmercury Compounds/toxicity , Unfolded Protein Response/drug effects , Animals , Apoptosis/drug effects , Brain/pathology , Cell Death/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/drug effects , Neurons/pathology , Oxidative Stress/drug effects , Spatio-Temporal Analysis , Time Factors
10.
Wound Repair Regen ; 28(5): 600-608, 2020 09.
Article in English | MEDLINE | ID: mdl-32356363

ABSTRACT

Ischemia-reperfusion (I/R) is associated with various pathogenic conditions, and there has been increasing evidence that cutaneous I/R injury is associated with the pathogenesis of pressure ulcers (PUs), especially at the early stage presenting as non-blanchable erythema. Several studies demonstrated that oxidative stress is a key player in I/R injury, and the inhibition of oxidative stress may be capable of protecting tissue damage after I/R injury in various organs including skin. Dimethyl fumarate (DMF) approved by the Food and Drug Administration is Nrf2 activator, and recent studies revealed the antioxidative and anti-inflammatory effects of DMF on I/R injury in animal models. Our objective was to assess the effects of oral administration of DMF on the development of PUs after cutaneous I/R injury in mice. We found that DMF administration significantly decreased the size of PUs after cutaneous I/R. Cutaneous I/R-induced oxidative stress was also significantly inhibited by DMF in OKD48 mice, in which oxidative stress can be visually assessed. In addition, DMF treatment decreased hypoxic area, the numbers of apoptotic cells, and vascular loss in I/R area. DMF treatment suppressed the infiltration of MPO+ neutrophils and the production of proinflammatory cytokines in I/R site after cutaneous I/R injury. in vitro experiments, DMF treatment suppressed the production of reactive oxygen species in pericyte-like cells. These results suggest that DMF treatment might prevent the formation of PUs induced by cutaneous I/R injury via suppressing oxidative stress and subsequent inflammation. DMF treatment during the early phase of decubitus ulcers might protect against further progression.


Subject(s)
Dimethyl Fumarate/pharmacology , Pressure Ulcer/etiology , Pressure Ulcer/prevention & control , Reperfusion Injury/complications , Administration, Oral , Animals , Dimethyl Fumarate/administration & dosage , Disease Models, Animal , Mice , Mice, Inbred C57BL , Oxidative Stress
11.
Ann Rheum Dis ; 78(1): 74-82, 2019 01.
Article in English | MEDLINE | ID: mdl-30355574

ABSTRACT

OBJECTIVE: Salmonella enterica infections can lead to Reactive Arthritis (ReA), which can exhibit an association with human leucocyte antigen (HLA)-B*27:05, a molecule prone to misfolding and initiation of the unfolded protein response (UPR). This study examined how HLA-B*27:05 expression and the UPR affect the Salmonella life-cycle within epithelial cells. METHODS: Isogenic epithelial cell lines expressing two copies of either HLA-B*27:05 and a control HLA-B*35:01 heavy chain (HC) were generated to determine the effect on the Salmonella infection life-cycle. A cell line expressing HLA-B*27:05.HC physically linked to the light chain beta-2-microglobulin and a specific peptide (referred to as a single chain trimer, SCT) was also generated to determine the effects of HLA-B27 folding status on S.enterica life-cycle. XBP-1 venus and AMP dependent Transcription Factor (ATF6)-FLAG reporters were used to monitor UPR activation in infected cells. Triacin C was used to inhibit de novo lipid synthesis during UPR, and confocal imaging of ER tracker stained membrane allowed quantification of glibenclamide-associated membrane. RESULTS: S.enterica demonstrated enhanced replication with an altered cellular localisation in the presence of HLA-B*27:05.HC but not in the presence of HLA-B*27:05.SCT or HLA-B*35:01. HLA-B*27:05.HC altered the threshold for UPR induction. Salmonella activated the UPR and required XBP-1 for replication, which was associated with endoreticular membrane expansion and lipid metabolism. CONCLUSIONS: HLA-B27 misfolding and a UPR cellular environment are associated with enhanced Salmonella replication, while Salmonella itself can activate XBP-1 and ATF6. These data provide a potential mechanism linking the life-cycle of Salmonella with the physicochemical properties of HLA-B27 and cellular events that may contribute to ReA pathogenesis. Our observations suggest that the UPR pathway maybe targeted for future therapeutic intervention.


Subject(s)
Epithelial Cells/cytology , HLA-B27 Antigen/metabolism , Salmonella Infections/microbiology , Salmonella enterica/metabolism , Unfolded Protein Response/physiology , Activating Transcription Factor 6/metabolism , Arthritis, Reactive/microbiology , Cell Cycle , Cell Line , HLA-B35 Antigen/metabolism , Humans , Prohibitins , Salmonella Infections/complications , X-Box Binding Protein 1/metabolism
12.
Nature ; 503(7475): 272-6, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24089213

ABSTRACT

The recognition of autophagy related 16-like 1 (ATG16L1) as a genetic risk factor has exposed the critical role of autophagy in Crohn's disease. Homozygosity for the highly prevalent ATG16L1 risk allele, or murine hypomorphic (HM) activity, causes Paneth cell dysfunction. As Atg16l1(HM) mice do not develop spontaneous intestinal inflammation, the mechanism(s) by which ATG16L1 contributes to disease remains obscure. Deletion of the unfolded protein response (UPR) transcription factor X-box binding protein-1 (Xbp1) in intestinal epithelial cells, the human orthologue of which harbours rare inflammatory bowel disease risk variants, results in endoplasmic reticulum (ER) stress, Paneth cell impairment and spontaneous enteritis. Unresolved ER stress is a common feature of inflammatory bowel disease epithelium, and several genetic risk factors of Crohn's disease affect Paneth cells. Here we show that impairment in either UPR (Xbp1(ΔIEC)) or autophagy function (Atg16l1(ΔIEC) or Atg7(ΔIEC)) in intestinal epithelial cells results in each other's compensatory engagement, and severe spontaneous Crohn's-disease-like transmural ileitis if both mechanisms are compromised. Xbp1(ΔIEC) mice show autophagosome formation in hypomorphic Paneth cells, which is linked to ER stress via protein kinase RNA-like endoplasmic reticulum kinase (PERK), elongation initiation factor 2α (eIF2α) and activating transcription factor 4 (ATF4). Ileitis is dependent on commensal microbiota and derives from increased intestinal epithelial cell death, inositol requiring enzyme 1α (IRE1α)-regulated NF-κB activation and tumour-necrosis factor signalling, which are synergistically increased when autophagy is deficient. ATG16L1 restrains IRE1α activity, and augmentation of autophagy in intestinal epithelial cells ameliorates ER stress-induced intestinal inflammation and eases NF-κB overactivation and intestinal epithelial cell death. ER stress, autophagy induction and spontaneous ileitis emerge from Paneth-cell-specific deletion of Xbp1. Genetically and environmentally controlled UPR function within Paneth cells may therefore set the threshold for the development of intestinal inflammation upon hypomorphic ATG16L1 function and implicate ileal Crohn's disease as a specific disorder of Paneth cells.


Subject(s)
Intestinal Diseases/physiopathology , Intestinal Mucosa/pathology , Paneth Cells/pathology , Animals , Autophagy/genetics , Autophagy-Related Proteins , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum Stress/genetics , Inflammation , Intestinal Diseases/genetics , Intestinal Mucosa/cytology , Mice , Regulatory Factor X Transcription Factors , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Unfolded Protein Response/physiology , X-Box Binding Protein 1 , eIF-2 Kinase/metabolism
13.
Circulation ; 134(14): 1039-1051, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27587433

ABSTRACT

BACKGROUND: Atherosclerotic lesion expansion is characterized by the development of a lipid-rich necrotic core known to be associated with the occurrence of complications. Abnormal lipid handling, inflammation, and alteration of cell survival or proliferation contribute to necrotic core formation, but the molecular mechanisms involved in this process are not properly understood. C-type lectin receptor 4e (Clec4e) recognizes the cord factor of Mycobacterium tuberculosis but also senses molecular patterns released by necrotic cells and drives inflammation. METHODS: We hypothesized that activation of Clec4e signaling by necrosis is causally involved in atherogenesis. We addressed the impact of Clec4e activation on macrophage functions in vitro and on the development of atherosclerosis using low-density lipoprotein receptor-deficient (Ldlr-/-) mice in vivo. RESULTS: We show that Clec4e is expressed within human and mouse atherosclerotic lesions and is activated by necrotic lesion extracts. Clec4e signaling in macrophages inhibits cholesterol efflux and induces a Syk-mediated endoplasmic reticulum stress response, leading to the induction of proinflammatory mediators and growth factors. Chop and Ire1a deficiencies significantly limit Clec4e-dependent effects, whereas Atf3 deficiency aggravates Clec4e-mediated inflammation and alteration of cholesterol efflux. Repopulation of Ldlr-/- mice with Clec4e-/- bone marrow reduces lipid accumulation, endoplasmic reticulum stress, and macrophage inflammation and proliferation within the developing arterial lesions and significantly limits atherosclerosis. CONCLUSIONS: Our results identify a nonredundant role for Clec4e in coordinating major biological pathways involved in atherosclerosis and suggest that it may play similar roles in other chronic inflammatory diseases.


Subject(s)
Atherosclerosis/metabolism , Lectins, C-Type/metabolism , Macrophages/metabolism , Membrane Proteins/metabolism , Receptors, Immunologic/metabolism , Unfolded Protein Response/physiology , Animals , Atherosclerosis/pathology , Humans , Inflammation/pathology , Inflammation Mediators/metabolism , Lectins, C-Type/genetics , Lipoproteins, LDL/metabolism , Membrane Proteins/genetics , Mice , Mice, Knockout , Necrosis/metabolism , Necrosis/pathology , Phenotype , Receptors, LDL/genetics , Receptors, LDL/metabolism
15.
Acta Neuropathol ; 134(3): 489-506, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28341998

ABSTRACT

Altered proteostasis is a salient feature of Alzheimer's disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress and abnormal protein aggregation. ER stress triggers the activation of the unfolded protein response (UPR), a signaling pathway that enforces adaptive programs to sustain proteostasis or eliminate terminally damaged cells. IRE1 is an ER-located kinase and endoribonuclease that operates as a major stress transducer, mediating both adaptive and proapoptotic programs under ER stress. IRE1 signaling controls the expression of the transcription factor XBP1, in addition to degrade several RNAs. Importantly, a polymorphism in the XBP1 promoter was suggested as a risk factor to develop AD. Here, we demonstrate a positive correlation between the progression of AD histopathology and the activation of IRE1 in human brain tissue. To define the significance of the UPR to AD, we targeted IRE1 expression in a transgenic mouse model of AD. Despite initial expectations that IRE1 signaling may protect against AD, genetic ablation of the RNase domain of IRE1 in the nervous system significantly reduced amyloid deposition, the content of amyloid ß oligomers, and astrocyte activation. IRE1 deficiency fully restored the learning and memory capacity of AD mice, associated with improved synaptic function and improved long-term potentiation (LTP). At the molecular level, IRE1 deletion reduced the expression of amyloid precursor protein (APP) in cortical and hippocampal areas of AD mice. In vitro experiments demonstrated that inhibition of IRE1 downstream signaling reduces APP steady-state levels, associated with its retention at the ER followed by proteasome-mediated degradation. Our findings uncovered an unanticipated role of IRE1 in the pathogenesis of AD, offering a novel target for disease intervention.


Subject(s)
Alzheimer Disease/metabolism , Hippocampus/metabolism , Membrane Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Disease Progression , Endoplasmic Reticulum Stress/physiology , Hippocampus/pathology , Humans , Long-Term Potentiation/physiology , Membrane Proteins/genetics , Mice , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Protein Serine-Threonine Kinases/genetics , Spatial Memory/physiology , Unfolded Protein Response/physiology
16.
Biol Pharm Bull ; 40(9): 1595-1598, 2017.
Article in English | MEDLINE | ID: mdl-28867746

ABSTRACT

Methylmercury (MeHg) results in cell death through endoplasmic reticulum (ER) stress. Previously, we reported that MeHg induces S-mercuration at cysteine 383 or 386 in protein disulfide isomerase (PDI), and this modification induces the loss of enzymatic activity. Because PDI is a key enzyme for the maturation of nascent protein harboring a disulfide bond, the disruption in PDI function by MeHg results in ER stress via the accumulation of misfolded proteins. However, the effects of MeHg on unfolded protein response (UPR) sensors and their signaling remain unclear. In the present study, we show that UPR is regulated by MeHg. We found that MeHg specifically attenuated inositol-requiring enzyme 1α (IRE1α)-x-box binding protein 1 (XBP1) branch, but not the protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activating transcriptional factor 6 (ATF6) branches. Treatment with GSK2606414, a specific PERK inhibitor, significantly inhibited MeHg-induced cell death. These findings suggest that MeHg exquisitely regulates UPR signaling involved in cell death.


Subject(s)
Methylmercury Compounds/pharmacology , Unfolded Protein Response/drug effects , Activating Transcription Factor 6/metabolism , Animals , Cell Death/drug effects , Cell Nucleus/drug effects , Cell Nucleus/ultrastructure , Endoplasmic Reticulum Stress/drug effects , Mice , Protein Disulfide Reductase (Glutathione)/metabolism , X-Box Binding Protein 1/antagonists & inhibitors , eIF-2 Kinase/antagonists & inhibitors , eIF-2 Kinase/metabolism
17.
Mol Cell ; 34(2): 191-200, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19394296

ABSTRACT

Endoplasmic reticulum (ER) stress triggers the cytoplasmic splicing of XBP1 mRNA by the transmembrane endoribonuclease IRE1alpha, resulting in activation of the unfolded protein response, which maintains ER homeostasis. We show that the unspliced XBP1 (XBP1u) mRNA is localized to the membrane, although its product is neither a secretory nor a membrane protein and is released to the cytosol after splicing. Biochemical and mutagenic analyses demonstrated that membrane localization of XBP1u mRNA required its in-frame translation. An insertional frame-shift mutation greatly diminished both membrane localization and splicing of the XBP1u mRNA. Furthermore, membrane localization was compromised by puromycin treatment and required a hydrophobic region within XBP1u. These data demonstrate that the nascent XBP1u polypeptide recruits its own mRNA to the membrane. This system serves to enhance cytoplasmic splicing and could facilitate a more rapid response to ER stress, and represents a unique way of cotranslational protein targeting coupled to mRNA maturation.


Subject(s)
Cytoplasm/metabolism , DNA-Binding Proteins/metabolism , Intracellular Membranes/metabolism , RNA Splicing , RNA, Messenger/metabolism , Transcription Factors/metabolism , Animals , Base Sequence , DNA-Binding Proteins/analysis , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Endoribonucleases/metabolism , Endoribonucleases/physiology , Humans , Mice , Molecular Sequence Data , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , Protein Structure, Tertiary , Protein Transport , RNA, Messenger/analysis , Regulatory Factor X Transcription Factors , Ribosomes/metabolism , Transcription Factors/analysis , Transcription Factors/chemistry , Transcription Factors/genetics , X-Box Binding Protein 1
18.
Hum Mol Genet ; 23(24): 6594-606, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25055872

ABSTRACT

Mutations in rhodopsin, the light-sensitive protein of rod cells, are the most common cause of autosomal dominant retinitis pigmentosa (ADRP). Many rod opsin mutations, such as P23H, lead to misfolding of rod opsin with detrimental effects on photoreceptor function and viability. Misfolded P23H rod opsin and other mutations in the intradiscal domain are characterized by the formation of an incorrect disulphide bond between C185 and C187, as opposed to the correct and highly conserved C110-C187 disulphide bond. Therefore, we tested the hypothesis that incorrect disulphide bond formation might be a factor that affects the biogenesis of rod opsin by studying wild-type (WT) or P23H rod opsin in combination with amino acid substitutions that prevent the formation of incorrect disulphide bonds involving C185. These mutants had altered traffic dynamics, suggesting a requirement for regulation of disulphide bond formation/reduction during rod opsin biogenesis. Here, we show that the BiP co-chaperone and reductase protein ERdj5 (DNAJC10) regulates this process. ERdj5 overexpression promoted the degradation, improved the endoplasmic reticulum mobility and prevented the aggregation of P23H rod opsin. ERdj5 reduction by shRNA delayed rod opsin degradation and promoted aggregation. The reductase and co-chaperone activity of ERdj5 were both required for these effects on P23H rod opsin. Furthermore, mutations in these functional domains acted as dominant negatives that affected WT rod opsin biogenesis. Collectively, these data identify ERdj5 as a member of the proteostasis network that regulates rod opsin biogenesis and supports a role for disulphide bond formation/reduction in rod opsin biogenesis and disease.


Subject(s)
HSP40 Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Neurons/metabolism , Rhodopsin/genetics , Cell Line, Tumor , Disulfides/chemistry , Endoplasmic Reticulum/metabolism , Gene Expression Regulation , HSP40 Heat-Shock Proteins/antagonists & inhibitors , HSP40 Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/metabolism , Mutation , Neurons/cytology , Plasmids/chemistry , Plasmids/metabolism , Protein Aggregates , Protein Folding , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhodopsin/metabolism , Signal Transduction , Transfection
19.
Genes Cells ; 20(11): 871-86, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26314560

ABSTRACT

Insulin biosynthesis has been well characterized with respect to transcriptional and post-translational regulation. However, the relationship between translational regulation of insulin and protein quality control in the endoplasmic reticulum (ER) remains to be clarified. Here we carried out forced expression of insulin in non-insulin-producing cells and compared activation level of ER stress-responsive molecules between insulin-producing cells and non-insulin-producing cells under normal culture condition or ER stress condition. Forced expression of insulin in non-insulin-producing cells caused severe ER stress with striking translational attenuation through phosphorylation of eIF2α by activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), resulting in inhibition of insulin production at the protein level. We also found that GADD34 and CReP are highly expressed in the cells that endogenously produce insulin and that eIF2α shows constitutively low phosphorylation level in these cells although PERK is constitutively activated under both normal culture conditions and physiological conditions in the same cells. Inhibition of eIF2α phosphatase further decreased insulin level in pancreatic ß cells. These findings suggest that eIF2α phosphorylation level is kept low by GADD34- and/or CReP-regulated phosphatases in pancreatic ß cells and that cancellation of phospho-eIF2α-dependent translational inhibition by the molecular mechanism contributes to mass production of insulin in pancreatic ß cells.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Insulin-Secreting Cells/physiology , Insulin/biosynthesis , Protein Phosphatase 1/metabolism , Animals , Cell Culture Techniques , Endoplasmic Reticulum/metabolism , Eukaryotic Initiation Factor-2/genetics , HEK293 Cells , HeLa Cells , Humans , Insulin/genetics , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Phosphorylation , Protein Biosynthesis , Protein Phosphatase 1/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
20.
Proc Natl Acad Sci U S A ; 110(8): 2864-9, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23386727

ABSTRACT

In mammals, the prototypical endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme 1 (IRE1) has diverged into two paralogs. IRE1α is broadly expressed and mediates the unconventional splicing of X-box binding protein 1 (XBP1) mRNA during ER stress. By contrast, IRE1ß is expressed selectively in the digestive tract, and its function remains unclear. Here, we report that IRE1ß plays a distinctive role in mucin-secreting goblet cells. In IRE1ß(-/-) mice, aberrant mucin 2 (MUC2) accumulated in the ER of goblet cells, accompanied by ER distension and elevated ER stress signaling such as increased XBP1 mRNA splicing. In contrast, conditional IRE1α(-/-) mice showed no such ER distension but a marked decrease in spliced XBP1 mRNA. mRNA stability assay revealed that MUC2 mRNA was greatly stabilized in IRE1ß(-/-) mice. These findings suggest that in goblet cells, IRE1ß, but not IRE1α, promotes efficient protein folding and secretion in the ER by optimizing the level of mRNA encoding their major secretory product, MUC2.


Subject(s)
Goblet Cells/metabolism , Membrane Proteins/physiology , Mucin-2/biosynthesis , Protein Serine-Threonine Kinases/physiology , Amino Acid Sequence , Animals , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Mice, Knockout , Molecular Sequence Data , Mucin-2/genetics , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL