Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 22(3)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535619

ABSTRACT

Environmental factors such as maternal high-fat diet (HFD) intake can increase the risk of age-related cognitive decline in adult offspring. Epigenetic mechanisms are a possible link between diet effect and neurodegeneration across generations. Here, we found a significant decrease in triglyceride levels in a high-fat diet with resveratrol (RSV) HFD + RSV group and the offspring. Firstly, we obtained better cognitive performance in HFD+RSV groups and their offspring. Molecularly, a significant increase in DNA methylation (5-mC) levels, as well as increased gene expression of DNA methyltransferase 1 (Dnmt1) and Dnmt3a in HFD + RSV F1 group, were found. Furthermore, a significant increase of N6-Methyladenosine methylation (m6A) levels in HFD+RSV F1, as well as changes in gene expression of its enzymes Methyltransferase like 3 (Mettl3) and FTO alpha-ketoglutarate dependent dioxygenase (Fto) were found. Moreover, we found a decrease in gene expression levels of pro-inflammatory markers such as Interleukin 1ß (Il1-ß), Interleukin 6 (Il-6), Tumor necrosis factor-α (Tnf-α), C-X-C motif chemokine ligand 10 (Cxcl-10), the pro-inflammatory factors monocyte chemoattractant protein 1 (Mcp-1) and Tumor growth factor-ß1 (Tgf-ß1) in HFD+RSV and HFD+RSV F1 groups. Moreover, there was increased gene expression of neurotrophins such as Neural growth factor (Ngf), Neurotrophin-3 (Nt3), and its receptors Tropomyosin receptor kinase TrkA and TrkB. Likewise, an increase in protein levels of brain-derived neurotrophic factor (BDNF) and phospho-protein kinase B (p-Akt) in HFD+RSV F1 was found. These results suggest that maternal RSV supplementation under HFD intake prevents cognitive decline in senescence-accelerated mice prone 8 (SAMP8) adult offspring, promoting a reduction in triglycerides and leptin plasma levels, changes in the pro-inflammatory profile, and restoring the epigenetic landscape as well as synaptic plasticity.


Subject(s)
Diet, High-Fat , Dietary Supplements , Epigenesis, Genetic , Maternal Exposure , Prenatal Exposure Delayed Effects , Resveratrol/pharmacology , Adenosine/analogs & derivatives , Adenosine/chemistry , Animals , Body Weight , Brain/physiology , Cognition , DNA Methylation , Epigenomics , Female , Inflammation , Leptin/blood , Male , Maze Learning , Methylation , Mice , Neurodegenerative Diseases , Neuronal Plasticity , Obesity/metabolism , Pregnancy , Pregnancy, Animal , Triglycerides/blood , Triglycerides/metabolism
3.
Int J Mol Sci ; 20(5)2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30845644

ABSTRACT

A variety of environmental factors contribute significantly to age-related cognitive decline and memory impairment in Alzheimer's Disease (AD) and other neurodegenerative diseases. Nutrition can alter epigenetics, improving health outcomes, which can be transmitted across generations; this process is called epigenetic inheritance. We investigate the beneficial effects of maternal resveratrol supplementation in the direct exposed F1 generation and the transgenerational F2 generation. The offspring was generated from females Senescence Accelerated Mouse-Prone (SAMP8) fed a resveratrol-enriched diet for two months prior to mating. Object novel recognition and Morris Water Maze (MWM) demonstrated improvements in cognition in the 6-month-old F1 and F2 generations from resveratrol fed mothers. A significant increase in global DNA methylation with a decrease in hydroxymethylation in F1 and F2 were found. Accordingly, Dnmt3a/b and Tet2 gene expression changed. Methylation levels of Nrf2 and NF-kß genes promoters raised in offspring, inducing changes in target genes expression, as well as hydrogen peroxide levels. Offspring that resulted from a resveratrol fed mother showed increase AMPKα activation, mTOR inhibition, and an increase in Pgc-1α gene expression and Beclin-1 protein levels. Endoplasmic reticulum stress sensors were found changed both in F1 and F2 generations. Overall, our results demonstrated that maternal resveratrol supplementation could prevent cognitive impairment in the SAMP8 mice offspring through epigenetic changes and cell signaling pathways.


Subject(s)
Antioxidants/administration & dosage , Cognitive Dysfunction/prevention & control , DNA Methylation/drug effects , Resveratrol/administration & dosage , Animals , Antioxidants/pharmacology , Cognitive Aging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Female , Hydrogen Peroxide/metabolism , Maternal-Fetal Exchange , Maze Learning/drug effects , Mice , Pregnancy , Promoter Regions, Genetic/drug effects , Resveratrol/pharmacology , Signal Transduction/drug effects
4.
Cells ; 11(19)2022 09 26.
Article in English | MEDLINE | ID: mdl-36230953

ABSTRACT

Establishing the role of non-coding RNA (ncRNA), especially microRNAs (miRNAs), in the regulation of cell function constitutes a current research challenge. Two to six miRNAs can act in clusters; particularly, the miR-17-92 family, composed of miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a is well-characterized. This cluster functions during embryonic development in cell differentiation, growth, development, and morphogenesis and is an established oncogenic cluster. However, its role in the regulation of cellular metabolism, mainly in lipid metabolism and autophagy, has received less attention. Here, we argue that the miR-17-92 cluster is highly relevant for these two processes, and thus, could be involved in the study of pathologies derived from lysosomal deficiencies. Lysosomes are related to both processes, as they control cholesterol flux and regulate autophagy. Accordingly, we compiled, analyzed, and discussed current evidence that highlights the cluster's fundamental role in regulating cellular energetic metabolism (mainly lipid and cholesterol flux) and atherosclerosis, as well as its critical participation in autophagy regulation. Because these processes are closely related to lysosomes, we also provide experimental data from the literature to support our proposal that the miR-17-92 cluster could be involved in the pathogenesis and effects of lysosomal storage diseases (LSD).


Subject(s)
Atherosclerosis , Lysosomal Storage Diseases , MicroRNAs , Humans , Atherosclerosis/genetics , Autophagy , Cholesterol , Lipids , MicroRNAs/genetics , MicroRNAs/metabolism
5.
Front Cell Neurosci ; 12: 224, 2018.
Article in English | MEDLINE | ID: mdl-30158856

ABSTRACT

Cumulative evidence shows that modifications in lifestyle factors constitute an effective strategy to modulate molecular events related to neurodegenerative diseases, confirming the relevant role of epigenetics. Accordingly, Environmental Enrichment (EE) represents an approach to ameliorate cognitive decline and neuroprotection in Alzheimer's disease (AD). AD is characterized by specific neuropathological hallmarks, such as ß-amyloid plaques and Neurofibrillary Tangles, which severely affect the areas of the brain responsible for learning and memory. We evaluated EE neuroprotective influence on 5xFAD mice. We found a better cognitive performance on EE vs. Control (Ct) 5xFAD mice, until being similar to Wild-Type (Wt) mice group. Neurodegenerative markers as ß-CTF and tau hyperphosphorylation, reduced protein levels whiles APPα, postsynaptic density 95 (PSD95) and synaptophysin (SYN) protein levels increased protein levels in the hippocampus of 5xFAD-EE mice group. Furthermore, a reduction in gene expression of Il-6, Gfap, Hmox1 and Aox1 was determined. However, no changes were found in the gene expression of neurotrophins, such as Brain-derived neurotrophic factor (Bdnf), Nerve growth factor (Ngf), Tumor growth factor (Tgf) and Nerve growth factor inducible (Vgf) in mice with EE. Specifically, we found a reduced DNA-methylation level (5-mC) and an increased hydroxymethylation level (5-hmC), as well as an increased histone H3 and H4 acetylation level. Likewise, we found changes in the hippocampal gene expression of some chromatin-modifying enzyme, such as Dnmt3a/b, Hdac1, and Tet2. Extensive molecular analysis revealed a correlation between neuronal function and changes in epigenetic marks after EE that explain the cognitive improvement in 5xFAD.

6.
Rejuvenation Res ; 20(3): 202-217, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27998210

ABSTRACT

Inflammation and oxidative stress (OS) are key points in age progression. Both processes impact negatively in cognition and in brain functions. Resveratrol (RV) has been postulated as a potent antioxidant natural compound, with rejuvenating properties. Inducing a metabolic stress by high-fat (HF) diet in aged C56/BL6 (24 months) led to cognitive disturbances compared with control age mated and with young mice. These changes were prevented by RV. Molecular determinations demonstrated a significant increase in some inflammatory parameters (TNF-α, Cxcl10, IL-1, IL-6, and Ccl3) in old mice, but slight changes in OS machinery. RV mainly induced the recovery of the metabolically stressed animals. The study of key markers involved in senescence and rejuvenation (mitochondrial biogenesis and Sirt1-AMPK-PGC1-α) demonstrated that RV is also able to modulate the changes in these cellular metabolic pathways. Moreover, changes of epigenetic marks (methylation and acetylation) that are depending on OS were demonstrated. On the whole, results showed the importance of integrative role of different cellular mechanisms in the deleterious effects of age in cognition and the beneficial role of RV. The work presented in this study showed a wide range of processes modified in old age and by metabolic stress, weighting the importance of each one and the role of RV as a possible strategy for fighting against.


Subject(s)
Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Inflammation/drug therapy , Neuroprotective Agents/therapeutic use , Stilbenes/therapeutic use , Stress, Physiological/drug effects , 5-Methylcytosine/metabolism , Animals , Biomarkers/metabolism , Body Weight/drug effects , Energy Intake/drug effects , Gene Expression Regulation/drug effects , Glucose Tolerance Test , Inflammation/complications , Male , Maze Learning/drug effects , Memory/drug effects , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Oxidative Phosphorylation/drug effects , Oxidative Stress/drug effects , Resveratrol , Stilbenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL