Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 155(3): 567-81, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24139898

ABSTRACT

Mutation is a fundamental process in tumorigenesis. However, the degree to which the rate of somatic mutation varies across the human genome and the mechanistic basis underlying this variation remain to be fully elucidated. Here, we performed a cross-cancer comparison of 402 whole genomes comprising a diverse set of childhood and adult tumors, including both solid and hematopoietic malignancies. Surprisingly, we found that the inactive X chromosome of many female cancer genomes accumulates on average twice and up to four times as many somatic mutations per megabase, as compared to the individual autosomes. Whole-genome sequencing of clonally expanded hematopoietic stem/progenitor cells (HSPCs) from healthy individuals and a premalignant myelodysplastic syndrome (MDS) sample revealed no X chromosome hypermutation. Our data suggest that hypermutation of the inactive X chromosome is an early and frequent feature of tumorigenesis resulting from DNA replication stress in aberrantly proliferating cells.


Subject(s)
Chromosomes, Human, X , Mutation , Neoplasms/genetics , X Chromosome Inactivation , Adult , Aged , DNA Replication , Female , Humans , Male , Medulloblastoma/genetics , Medulloblastoma/pathology , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Polymorphism, Single Nucleotide , S Phase
2.
Cell ; 148(1-2): 59-71, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22265402

ABSTRACT

Genomic rearrangements are thought to occur progressively during tumor development. Recent findings, however, suggest an alternative mechanism, involving massive chromosome rearrangements in a one-step catastrophic event termed chromothripsis. We report the whole-genome sequencing-based analysis of a Sonic-Hedgehog medulloblastoma (SHH-MB) brain tumor from a patient with a germline TP53 mutation (Li-Fraumeni syndrome), uncovering massive, complex chromosome rearrangements. Integrating TP53 status with microarray and deep sequencing-based DNA rearrangement data in additional patients reveals a striking association between TP53 mutation and chromothripsis in SHH-MBs. Analysis of additional tumor entities substantiates a link between TP53 mutation and chromothripsis, and indicates a context-specific role for p53 in catastrophic DNA rearrangements. Among these, we observed a strong association between somatic TP53 mutations and chromothripsis in acute myeloid leukemia. These findings connect p53 status and chromothripsis in specific tumor types, providing a genetic basis for understanding particularly aggressive subtypes of cancer.


Subject(s)
Brain Neoplasms/genetics , Gene Rearrangement , Medulloblastoma/genetics , Tumor Suppressor Protein p53/genetics , Animals , Child , Chromosome Aberrations , DNA Copy Number Variations , DNA Mutational Analysis , Disease Models, Animal , Humans , Leukemia, Myeloid, Acute/genetics , Li-Fraumeni Syndrome/physiopathology , Mice , Middle Aged
3.
Nature ; 580(7803): 396-401, 2020 04.
Article in English | MEDLINE | ID: mdl-32296180

ABSTRACT

Cancer genomics has revealed many genes and core molecular processes that contribute to human malignancies, but the genetic and molecular bases of many rare cancers remains unclear. Genetic predisposition accounts for 5 to 10% of cancer diagnoses in children1,2, and genetic events that cooperate with known somatic driver events are poorly understood. Pathogenic germline variants in established cancer predisposition genes have been recently identified in 5% of patients with the malignant brain tumour medulloblastoma3. Here, by analysing all protein-coding genes, we identify and replicate rare germline loss-of-function variants across ELP1 in 14% of paediatric patients with the medulloblastoma subgroup Sonic Hedgehog (MBSHH). ELP1 was the most common medulloblastoma predisposition gene and increased the prevalence of genetic predisposition to 40% among paediatric patients with MBSHH. Parent-offspring and pedigree analyses identified two families with a history of paediatric medulloblastoma. ELP1-associated medulloblastomas were restricted to the molecular SHHα subtype4 and characterized by universal biallelic inactivation of ELP1 owing to somatic loss of chromosome arm 9q. Most ELP1-associated medulloblastomas also exhibited somatic alterations in PTCH1, which suggests that germline ELP1 loss-of-function variants predispose individuals to tumour development in combination with constitutive activation of SHH signalling. ELP1 is the largest subunit of the evolutionarily conserved Elongator complex, which catalyses translational elongation through tRNA modifications at the wobble (U34) position5,6. Tumours from patients with ELP1-associated MBSHH were characterized by a destabilized Elongator complex, loss of Elongator-dependent tRNA modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response, consistent with loss of protein homeostasis due to Elongator deficiency in model systems7-9. Thus, genetic predisposition to proteome instability may be a determinant in the pathogenesis of paediatric brain cancers. These results support investigation of the role of protein homeostasis in other cancer types and potential for therapeutic interference.


Subject(s)
Cerebellar Neoplasms/metabolism , Germ-Line Mutation , Medulloblastoma/metabolism , Transcriptional Elongation Factors/metabolism , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Child , Female , Humans , Male , Medulloblastoma/genetics , Pedigree , RNA, Transfer/metabolism , Transcriptional Elongation Factors/genetics
4.
Int J Cancer ; 154(8): 1455-1463, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38175816

ABSTRACT

Lynch syndrome (LS) predisposes to cancer in adulthood and is caused by heterozygous germline variants in a mismatch repair (MMR) gene. Recent studies show an increased prevalence of LS among children with cancer, suggesting a causal relationship. For LS-spectrum (LSS) cancers, including high-grade gliomas and colorectal cancer, causality has been supported by typical MMR-related tumor characteristics, but for non-LSS cancers, causality is unclear. We characterized 20 malignant tumors of 18 children with LS, including 16 non-LSS tumors. We investigated second hits, tumor mutational load, mutational signatures and MMR protein expression. In all LSS tumors and three non-LSS tumors, we detected MMR deficiency caused by second hit somatic alterations. Furthermore, these MMR-deficient tumors carried driver variants that likely originated as a consequence of MMR deficiency. However, in 13 non-LSS tumors (81%), a second hit and MMR deficiency were absent, thus a causal link between LS and cancer development in these children is lacking. These findings demonstrate that causality of LS in children with cancer, which can be determined by molecular tumor characterization, seems to be restricted to specific tumor types. Large molecular and epidemiological studies are needed to further refine the tumor spectrum in children with LS.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Child , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Colorectal Neoplasms/pathology , Brain Neoplasms/genetics , Germ-Line Mutation , DNA Mismatch Repair/genetics , Microsatellite Instability , MutL Protein Homolog 1/genetics
5.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36576005

ABSTRACT

MOTIVATION: As non-coding driver mutations move more into the focus of cancer research, a comprehensive and easy-to-use software solution for regulatory variant analysis and data visualization is highly relevant. The interpretation of regulatory variants in large tumor genome cohorts requires specialized analysis and visualization of multiple layers of data, including for example breakpoints of structural variants, enhancer elements and additional available gene locus annotation, in the context of changes in gene expression. RESULTS: We introduce a user-friendly tool, Revana (REgulatory Variant ANAlysis), that can aggregate and visually represent regulatory variants from cancer genomes in a gene-centric manner. It requires whole-genome and RNA sequencing data of a cohort of tumor samples and creates interactive HTML reports summarizing the most important regulatory events. AVAILABILITY AND IMPLEMENTATION: Revana is implemented in R and JavaScript. It is available for download as an R package under . Sample results can be viewed under and a short walkthrough is available under . SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics , Neoplasms , Humans , Genome , Software , Molecular Sequence Annotation , Neoplasms/genetics
6.
Semin Cancer Biol ; 84: 103-112, 2022 09.
Article in English | MEDLINE | ID: mdl-33476720

ABSTRACT

High-throughput molecular profiling of tumors is a fundamental aspect of precision oncology, enabling the identification of genomic alterations that can be targeted therapeutically. In this context, a patient is matched to a specific drug or therapy based on the tumor's underlying genetic driver events rather than the histologic classification. This approach requires extensive bioinformatics methodology and workflows, including raw sequencing data processing and quality control, variant calling and annotation, integration of different molecular data types, visualization and finally reporting the data to physicians, cancer researchers and pharmacologists in a format that is readily interpretable for clinical decision making. This review comprises a broad overview of these bioinformatics aspects and discusses the multiple analytical, technical and interpretational challenges that remain to efficiently translate molecular findings into personalized treatment recommendations.


Subject(s)
Computational Biology , Neoplasms , Computational Biology/methods , High-Throughput Nucleotide Sequencing , Humans , Medical Oncology , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine/methods , Workflow
7.
J Transl Med ; 21(1): 363, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277823

ABSTRACT

BACKGROUND: Cancer metabolism influences multiple aspects of tumorigenesis and causes diversity across malignancies. Although comprehensive research has extended our knowledge of molecular subgroups in medulloblastoma (MB), discrete analysis of metabolic heterogeneity is currently lacking. This study seeks to improve our understanding of metabolic phenotypes in MB and their impact on patients' outcomes. METHODS: Data from four independent MB cohorts encompassing 1,288 patients were analysed. We explored metabolic characteristics of 902 patients (ICGC and MAGIC cohorts) on bulk RNA level. Moreover, data from 491 patients (ICGC cohort) were searched for DNA alterations in genes regulating cell metabolism. To determine the role of intratumoral metabolic differences, we examined single-cell RNA-sequencing (scRNA-seq) data from 34 additional patients. Findings on metabolic heterogeneity were correlated to clinical data. RESULTS: Established MB groups exhibit substantial differences in metabolic gene expression. By employing unsupervised analyses, we identified three clusters of group 3 and 4 samples with distinct metabolic features in ICGC and MAGIC cohorts. Analysis of scRNA-seq data confirmed our results of intertumoral heterogeneity underlying the according differences in metabolic gene expression. On DNA level, we discovered clear associations between altered regulatory genes involved in MB development and lipid metabolism. Additionally, we determined the prognostic value of metabolic gene expression in MB and showed that expression of genes involved in metabolism of inositol phosphates and nucleotides correlates with patient survival. CONCLUSION: Our research underlines the biological and clinical relevance of metabolic alterations in MB. Thus, distinct metabolic signatures presented here might be the first step towards future metabolism-targeted therapeutic options.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Medulloblastoma/genetics , Cerebellar Neoplasms/genetics , Mutation , Phenotype , RNA
8.
BMC Cancer ; 23(1): 310, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37020198

ABSTRACT

BACKGROUND: Pediatric cancer is the leading cause of disease-related death in children and the need for better therapeutic options remains urgent. Due to the limited number of patients, target and drug development for pediatrics is often supplemented by data from studies focused on adult cancers. Recent evidence shows that pediatric cancers possess different vulnerabilities that should be explored independently from adult cancers. METHODS: Using the publicly available Genomics of Drug Sensitivity in Cancer database, we explore therapeutic targets and biomarkers specific to the pediatric solid malignancies Ewing sarcoma, medulloblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. Results are validated using cell viability assays and high-throughput drug screens are used to identify synergistic combinations. RESULTS: Using published drug screening data, PARP is identified as a drug target of interest across multiple different pediatric malignancies. We validate these findings, and we show that efficacy can be improved when combined with conventional chemotherapeutics, namely topoisomerase inhibitors. Additionally, using gene set enrichment analysis, we identify ribosome biogenesis as a potential biomarker for PARP inhibition in pediatric cancer cell lines. CONCLUSION: Collectively, our results provide evidence to support the further development of PARP inhibition and the combination with TOP1 inhibition as a therapeutic approach in solid pediatric malignancies. Additionally, we propose ribosome biogenesis as a component to PARP inhibitor sensitivity that should be further investigated to help maximize the potential utility of PARP inhibition and combinations across pediatric solid malignancies.


Subject(s)
Antineoplastic Agents , Cerebellar Neoplasms , Neuroblastoma , Sarcoma, Ewing , Humans , Child , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use , Sarcoma, Ewing/drug therapy , Neuroblastoma/pathology , Cerebellar Neoplasms/drug therapy , Cell Line, Tumor
9.
Nature ; 547(7663): 311-317, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28726821

ABSTRACT

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


Subject(s)
DNA Mutational Analysis , Genome, Human/genetics , Medulloblastoma/classification , Medulloblastoma/genetics , Whole Genome Sequencing , Carcinogenesis/genetics , Carrier Proteins/genetics , Cohort Studies , DNA Methylation , Datasets as Topic , Epistasis, Genetic , Genomics , Humans , Molecular Targeted Therapy , Muscle Proteins/genetics , Mutation , Oncogenes/genetics , Transcription Factors/genetics , Wnt Proteins/genetics
10.
Pharmacol Res ; 175: 105996, 2022 01.
Article in English | MEDLINE | ID: mdl-34848323

ABSTRACT

High throughput screening methods, measuring the sensitivity and resistance of tumor cells to drug treatments have been rapidly evolving. Not only do these screens allow correlating response profiles to tumor genomic features for developing novel predictors of treatment response, but they can also add evidence for therapy decision making in precision oncology. Recent analysis methods developed for either assessing single agents or combination drug efficacies enable quantification of dose-response curves with restricted symmetric fit settings. Here, we introduce iTReX, a user-friendly and interactive Shiny/R application, for both the analysis of mono- and combination therapy responses. The application features an extended version of the drug sensitivity score (DSS) based on the integral of an advanced five-parameter dose-response curve model and a differential DSS for combination therapy profiling. Additionally, iTReX includes modules that visualize drug target interaction networks and support the detection of matches between top therapy hits and the sample omics features to enable the identification of druggable targets and biomarkers. iTReX enables the analysis of various quantitative drug or therapy response readouts (e.g. luminescence, fluorescence microscopy) and multiple treatment strategies (drug treatments, radiation). Using iTReX we validate a cost-effective drug combination screening approach and reveal the application's ability to identify potential sample-specific biomarkers based on drug target interaction networks. The iTReX web application is accessible at https://itrex.kitz-heidelberg.de.


Subject(s)
Antineoplastic Agents/administration & dosage , Software , Antineoplastic Combined Chemotherapy Protocols , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Synergism , Drug Therapy, Combination , High-Throughput Screening Assays , Humans
11.
Acta Neuropathol ; 141(4): 605-617, 2021 04.
Article in English | MEDLINE | ID: mdl-33585982

ABSTRACT

Low-grade gliomas (LGGs) are the most common childhood brain tumor in the general population and in individuals with the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Surgical biopsy is rarely performed prior to treatment in the setting of NF1, resulting in a paucity of tumor genomic information. To define the molecular landscape of NF1-associated LGGs (NF1-LGG), we integrated clinical data, histological diagnoses, and multi-level genetic/genomic analyses on 70 individuals from 25 centers worldwide. Whereas, most tumors harbored bi-allelic NF1 inactivation as the only genetic abnormality, 11% had additional mutations. Moreover, tumors classified as non-pilocytic astrocytoma based on DNA methylation analysis were significantly more likely to harbor these additional mutations. The most common secondary alteration was FGFR1 mutation, which conferred an additional growth advantage in multiple complementary experimental murine Nf1 models. Taken together, this comprehensive characterization has important implications for the management of children with NF1-LGG, distinct from their sporadic counterparts.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Neurofibromatosis 1/complications , Adolescent , Animals , Child , Child, Preschool , Female , Humans , Infant , Male , Mice , Mutation
12.
Acta Neuropathol ; 142(5): 841-857, 2021 11.
Article in English | MEDLINE | ID: mdl-34417833

ABSTRACT

Large-scale molecular profiling studies in recent years have shown that central nervous system (CNS) tumors display a much greater heterogeneity in terms of molecularly distinct entities, cellular origins and genetic drivers than anticipated from histological assessment. DNA methylation profiling has emerged as a useful tool for robust tumor classification, providing new insights into these heterogeneous molecular classes. This is particularly true for rare CNS tumors with a broad morphological spectrum, which are not possible to assign as separate entities based on histological similarity alone. Here, we describe a molecularly distinct subset of predominantly pediatric CNS neoplasms (n = 60) that harbor PATZ1 fusions. The original histological diagnoses of these tumors covered a wide spectrum of tumor types and malignancy grades. While the single most common diagnosis was glioblastoma (GBM), clinical data of the PATZ1-fused tumors showed a better prognosis than typical GBM, despite frequent relapses. RNA sequencing revealed recurrent MN1:PATZ1 or EWSR1:PATZ1 fusions related to (often extensive) copy number variations on chromosome 22, where PATZ1 and the two fusion partners are located. These fusions have individually been reported in a number of glial/glioneuronal tumors, as well as extracranial sarcomas. We show here that they are more common than previously acknowledged, and together define a biologically distinct CNS tumor type with high expression of neural development markers such as PAX2, GATA2 and IGF2. Drug screening performed on the MN1:PATZ1 fusion-bearing KS-1 brain tumor cell line revealed preliminary candidates for further study. In summary, PATZ1 fusions define a molecular class of histologically polyphenotypic neuroepithelial tumors, which show an intermediate prognosis under current treatment regimens.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Kruppel-Like Transcription Factors/genetics , Neoplasms, Neuroepithelial/genetics , Neoplasms, Neuroepithelial/pathology , Repressor Proteins/genetics , Biomarkers, Tumor/genetics , Child , Child, Preschool , Female , Humans , Male , Oncogene Fusion , Oncogene Proteins, Fusion/genetics
13.
BMC Cancer ; 20(1): 523, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32503469

ABSTRACT

BACKGROUND: Pediatric patients with relapsed or refractory disease represent a population with a desperate medical need. The aim of the INFORM (INdividualized Therapy FOr Relapsed Malignancies in Childhood) program is to translate next generation molecular diagnostics into a biomarker driven treatment strategy. The program consists of two major foundations: the INFORM registry providing a molecular screening platform and the INFORM2 series of biomarker driven phase I/II trials. The INFORM2 NivEnt trial aims to determine the recommended phase 2 dose (RP2D) of the combination treatment of nivolumab and entinostat (phase I) and to evaluate activity and safety (phase II). METHODS: This is an exploratory non-randomized, open-label, multinational and multicenter seamless phase I/II trial in children and adolescents with relapsed / refractory or progressive high-risk solid tumors and CNS tumors. The phase I is divided in 2 age cohorts: 12-21 years and 6-11 years and follows a 3 + 3 design with two dose levels for entinostat (2 mg/m2 and 4 mg/m2 once per week) and fixed dose nivolumab (3 mg/kg every 2 weeks). Patients entering the trial on RP2D can seamlessly enter phase II which consists of a biomarker defined four group basket trial: high mutational load (group A), high PD-L1 mRNA expression (group B), focal MYC(N) amplification (group C), low mutational load and low PD-L1 mRNA expression and no MYC(N) amplification (group D). A Bayesian adaptive design will be used to early stop cohorts that fail to show evidence of activity. The maximum number of patients is 128. DISCUSSION: This trial intends to exploit the immune enhancing effects of entinostat on nivolumab using an innovative biomarker driven approach in order to maximize the chance of detecting signs of activity. It prevents exposure to unnecessary risks by applying the Bayesian adaptive design for early stopping for futility. The adaptive biomarker driven design provides an innovative approach accelerating drug development and reducing exposure to investigational treatments in these vulnerable children at the same time. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03838042. Registered on 12 February 2019.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Benzamides/administration & dosage , Biomarkers, Tumor/analysis , Neoplasms/drug therapy , Nivolumab/administration & dosage , Pyridines/administration & dosage , Adolescent , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bayes Theorem , Benzamides/adverse effects , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Child , Dose-Response Relationship, Drug , Drug Monitoring/methods , Drug Resistance, Neoplasm , Female , Humans , Male , Medical Futility , Mutation , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/pathology , Nivolumab/adverse effects , Precision Medicine/methods , Pyridines/adverse effects , Treatment Outcome , Young Adult
14.
Nature ; 511(7510): 428-34, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-25043047

ABSTRACT

Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.


Subject(s)
DNA-Binding Proteins/genetics , Enhancer Elements, Genetic/genetics , Genomic Structural Variation/genetics , Medulloblastoma/genetics , Oncogenes/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Animals , Child , Chromosomes, Human, Pair 9/genetics , DNA-Binding Proteins/metabolism , Humans , Medulloblastoma/classification , Medulloblastoma/pathology , Mice , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism
15.
Nature ; 510(7506): 537-41, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24847876

ABSTRACT

Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver. Here we present whole-genome bisulphite-sequencing data from thirty-four human and five murine tumours plus eight human and three murine normal controls, augmented with matched whole-genome, RNA and chromatin immunoprecipitation sequencing data. This comprehensive data set allowed us to decipher several features underlying the interplay between the genome, epigenome and transcriptome, and its effects on medulloblastoma pathophysiology. Most notable were highly prevalent regions of hypomethylation correlating with increased gene expression, extending tens of kilobases downstream of transcription start sites. Focal regions of low methylation linked to transcription-factor-binding sites shed light on differential transcriptional networks between subgroups, whereas increased methylation due to re-normalization of repressed chromatin in DNA methylation valleys was positively correlated with gene expression. Large, partially methylated domains affecting up to one-third of the genome showed increased mutation rates and gene silencing in a subgroup-specific fashion. Epigenetic alterations also affected novel medulloblastoma candidate genes (for example, LIN28B), resulting in alternative promoter usage and/or differential messenger RNA/microRNA expression. Analysis of mouse medulloblastoma and precursor-cell methylation demonstrated a somatic origin for many alterations. Our data provide insights into the epigenetic regulation of transcription and genome organization in medulloblastoma pathogenesis, which are probably also of importance in a wider developmental and disease context.


Subject(s)
DNA Methylation/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Medulloblastoma/genetics , Sequence Analysis, DNA/methods , Animals , Binding Sites , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Female , Genome/genetics , Histones/metabolism , Humans , Medulloblastoma/pathology , Mice , Promoter Regions, Genetic/genetics , RNA-Binding Proteins/genetics , Transcription Factors/metabolism , Transcription, Genetic
16.
BMC Bioinformatics ; 20(1): 428, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31419933

ABSTRACT

BACKGROUND: With the advent of array-based techniques to measure methylation levels in primary tumor samples, systematic investigations of methylomes have widely been performed on a large number of tumor entities. Most of these approaches are not based on measuring individual cell methylation but rather the bulk tumor sample DNA, which contains a mixture of tumor cells, infiltrating immune cells and other stromal components. This raises questions about the purity of a certain tumor sample, given the varying degrees of stromal infiltration in different entities. Previous methods to infer tumor purity require or are based on the use of matching control samples which are rarely available. Here we present a novel, reference free method to quantify tumor purity, based on two Random Forest classifiers, which were trained on ABSOLUTE as well as ESTIMATE purity values from TCGA tumor samples. We subsequently apply this method to a previously published, large dataset of brain tumors, proving that these models perform well in datasets that have not been characterized with respect to tumor purity . RESULTS: Using two gold standard methods to infer purity - the ABSOLUTE score based on whole genome sequencing data and the ESTIMATE score based on gene expression data- we have optimized Random Forest classifiers to predict tumor purity in entities that were contained in the TCGA project. We validated these classifiers using an independent test data set and cross-compared it to other methods which have been applied to the TCGA datasets (such as ESTIMATE and LUMP). Using Illumina methylation array data of brain tumor entities (as published in Capper et al. (Nature 555:469-474,2018)) we applied this model to estimate tumor purity and find that subgroups of brain tumors display substantial differences in tumor purity. CONCLUSIONS: Random forest- based tumor purity prediction is a well suited tool to extrapolate gold standard measures of purity to novel methylation array datasets. In contrast to other available methylation based tumor purity estimation methods, our classifiers do not need a priori knowledge about the tumor entity or matching control tissue to predict tumor purity.


Subject(s)
Algorithms , DNA Methylation/genetics , Neoplasms/genetics , Oligonucleotide Array Sequence Analysis , Software , Brain Neoplasms/genetics , DNA, Neoplasm , Humans , Reproducibility of Results
17.
Acta Neuropathol ; 138(2): 309-326, 2019 08.
Article in English | MEDLINE | ID: mdl-31076851

ABSTRACT

In 2012, an international consensus paper reported that medulloblastoma comprises four molecular subgroups (WNT, SHH, Group 3, and Group 4), each associated with distinct genomic features and clinical behavior. Independently, multiple recent reports have defined further intra-subgroup heterogeneity in the form of biologically and clinically relevant subtypes. However, owing to differences in patient cohorts and analytical methods, estimates of subtype number and definition have been inconsistent, especially within Group 3 and Group 4. Herein, we aimed to reconcile the definition of Group 3/Group 4 MB subtypes through the analysis of a series of 1501 medulloblastomas with DNA-methylation profiling data, including 852 with matched transcriptome data. Using multiple complementary bioinformatic approaches, we compared the concordance of subtype calls between published cohorts and analytical methods, including assessments of class-definition confidence and reproducibility. While the lowest complexity solutions continued to support the original consensus subgroups of Group 3 and Group 4, our analysis most strongly supported a definition comprising eight robust Group 3/Group 4 subtypes (types I-VIII). Subtype II was consistently identified across all component studies, while all others were supported by multiple class-definition methods. Regardless of analytical technique, increasing cohort size did not further increase the number of identified Group 3/Group 4 subtypes. Summarizing the molecular and clinico-pathological features of these eight subtypes indicated enrichment of specific driver gene alterations and cytogenetic events amongst subtypes, and identified highly disparate survival outcomes, further supporting their biological and clinical relevance. Collectively, this study provides continued support for consensus Groups 3 and 4 while enabling robust derivation of, and categorical accounting for, the extensive intertumoral heterogeneity within Groups 3 and 4, revealed by recent high-resolution subclassification approaches. Furthermore, these findings provide a basis for application of emerging methods (e.g., proteomics/single-cell approaches) which may additionally inform medulloblastoma subclassification. Outputs from this study will help shape definition of the next generation of medulloblastoma clinical protocols and facilitate the application of enhanced molecularly guided risk stratification to improve outcomes and quality of life for patients and their families.


Subject(s)
Cerebellar Neoplasms/classification , Medulloblastoma/classification , Adolescent , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/mortality , Cerebellar Neoplasms/pathology , Child , Child, Preschool , DNA Methylation , DNA, Neoplasm/genetics , Female , Gene Expression Profiling , Genes, myc , Humans , Infant , Kaplan-Meier Estimate , Male , Medulloblastoma/genetics , Medulloblastoma/mortality , Medulloblastoma/pathology , Transcriptome
18.
Nature ; 500(7463): 415-21, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23945592

ABSTRACT

All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.


Subject(s)
Cell Transformation, Neoplastic/genetics , Mutagenesis/genetics , Mutation/genetics , Neoplasms/genetics , Aging/genetics , Algorithms , Cell Transformation, Neoplastic/pathology , Cytidine Deaminase/genetics , DNA/genetics , DNA/metabolism , DNA Mutational Analysis , Humans , Models, Genetic , Mutagenesis, Insertional/genetics , Mutagens/pharmacology , Neoplasms/enzymology , Neoplasms/pathology , Organ Specificity , Reproducibility of Results , Sequence Deletion/genetics , Transcription, Genetic/genetics
19.
Nature ; 482(7384): 226-31, 2012 Jan 29.
Article in English | MEDLINE | ID: mdl-22286061

ABSTRACT

Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromatin/genetics , Glioblastoma/genetics , Histones/genetics , Mutation/genetics , Adaptor Proteins, Signal Transducing/genetics , Base Sequence , Child , Chromatin/metabolism , Co-Repressor Proteins , DNA Helicases/genetics , DNA Mutational Analysis , Exome/genetics , Gene Expression Profiling , Histones/metabolism , Humans , Molecular Chaperones , Molecular Sequence Data , Nuclear Proteins/genetics , Telomere/genetics , Tumor Suppressor Protein p53/genetics , X-linked Nuclear Protein
20.
Nature ; 488(7409): 100-5, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22832583

ABSTRACT

Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.


Subject(s)
Cerebellar Neoplasms/genetics , Genome, Human/genetics , Medulloblastoma/genetics , Aging/genetics , Amino Acid Sequence , Cell Transformation, Neoplastic , Cerebellar Neoplasms/classification , Cerebellar Neoplasms/diagnosis , Cerebellar Neoplasms/pathology , Child , Chromatin/metabolism , Chromosomes, Human/genetics , DEAD-box RNA Helicases/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Genomics , Hedgehog Proteins/metabolism , High-Throughput Nucleotide Sequencing , Histone Demethylases/genetics , Humans , Medulloblastoma/classification , Medulloblastoma/diagnosis , Medulloblastoma/pathology , Methylation , Mutation/genetics , Mutation Rate , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/genetics , Patched Receptors , Patched-1 Receptor , Phosphoprotein Phosphatases/genetics , Polyploidy , Receptors, Cell Surface/genetics , Sequence Analysis, RNA , Signal Transduction , T-Box Domain Proteins/genetics , Transcription Factors/genetics , Wnt Proteins/metabolism , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL