Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Inorg Chem ; 61(19): 7631-7641, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35507007

ABSTRACT

The use of metal-binding pharmacophores (MBPs) in fragment-based drug discovery has proven effective for targeted metalloenzyme drug development. However, MBPs can still suffer from pharmacokinetic liabilities. Bioisostere replacement is an effective strategy utilized by medicinal chemists to navigate these issues during the drug development process. The quinoline pharmacophore and its bioisosteres, such as quinazoline, are important building blocks in the design of new therapeutics. More relevant to metalloenzyme inhibition, 8-hydroxyquinoline (8-HQ) and its derivatives can serve as MBPs for metalloenzyme inhibition. In this report, 8-HQ isosteres are designed and the coordination chemistry of the resulting metal-binding isosteres (MBIs) is explored using a bioinorganic model complex. In addition, the physicochemical properties and metalloenzyme inhibition activity of these MBIs were investigated to establish drug-like profiles. This report provides a new group of 8-HQ-derived MBIs that can serve as novel scaffolds for metalloenzyme inhibitor development with tunable, and potentially improved, physicochemical properties.


Subject(s)
Metalloproteins , Oxyquinoline , Chelating Agents , Drug Discovery , Metalloproteins/chemistry , Oxyquinoline/pharmacology
2.
Sci Adv ; 9(43): eadj2314, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37889964

ABSTRACT

The generation of attractive scaffolds for drug discovery efforts requires the expeditious synthesis of diverse analogues from readily available building blocks. This endeavor necessitates a trade-off between diversity and ease of access and is further complicated by uncertainty about the synthesizability and pharmacokinetic properties of the resulting compounds. Here, we document a platform that leverages photocatalytic N-heterocycle synthesis, high-throughput experimentation, automated purification, and physicochemical assays on 1152 discrete reactions. Together, the data generated allow rational predictions of the synthesizability of stereochemically diverse C-substituted N-saturated heterocycles with deep learning and reveal unexpected trends on the relationship between structure and properties. This study exemplifies how organic chemists can exploit state-of-the-art technologies to markedly increase throughput and confidence in the preparation of drug-like molecules.


Subject(s)
Drug Discovery , Drug Discovery/methods , Pharmacokinetics , High-Throughput Screening Assays , Chemistry Techniques, Synthetic
3.
Chem Sci ; 13(7): 2128-2136, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35308862

ABSTRACT

Metalloenzyme inhibitors typically share a common need to possess a metal-binding pharmacophore (MBP) for binding the active site metal ions. However, MBPs can suffer from physicochemical liabilities, impeding the pharmacological properties and drug-likeliness of inhibitors. To circumvent this, problematic features of the MBP can be identified and exchanged with isosteric replacements. Herein, the carboxylic and hydroxyl group of the salicylic acid MBP were replaced and a total of 27 salicylate metal-binding isosteres (MBIs) synthesized. Of these 27 MBIs, at least 12 represent previously unreported compounds, and the metal-binding abilities of >20 of the MBIs have not been previously reported. These salicylate MBIs were examined for their metal-binding features in model complexes, physicochemical properties, and biological activity. It was observed that salicylate MBIs can demonstrate a range of attractive physicochemical properties and bind to the metal in a variety of expected and unexpected binding modes. The biological activity of these novel MBIs was evaluated by measuring inhibition against two Zn2+-dependent metalloenzymes, human glyoxalase 1 (GLO1) and matrix metalloproteinase 3 (MMP-3), as well as a dinuclear Mn2+-dependent metalloenzyme, influenza H1N1 N-terminal endonuclease (PAN). It was observed that salicylate MBIs could maintain or improve enzyme inhibition and selectivity. To probe salicylate MBIs as fragments for fragment-based drug discovery (FBDD), an MBI that showed good inhibitory activity against GLO1 was derivatized and a rudimentary structure-activity relationship was developed. The resulting elaborated fragments showed GLO1 inhibition with low micromolar activity.

4.
Chem Sci ; 9(23): 5191-5196, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29997873

ABSTRACT

We report the facile formation of trifluoroborate-iminiums (TIMs) from potassium acyltrifluoroborates (KATs) and the transformation of TIMs to α-aminotrifluoroborates by reduction or Grignard additions. Conditions for the hydrolysis of α-aminotrifluoroborates to α-aminoboronic acids, which are important biologically active compounds, were established. This new methodology allows access to sterically demanding α-aminoboronic acids that are not easily prepared with currently available methods. This work also introduces TIMs, that can be easily prepared and handled, as a new category of functional groups that serve as precursors to valuable organic compounds.

5.
Org Lett ; 20(13): 4044-4047, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29938515

ABSTRACT

The cross-coupling of α-aminoalkyltrifluoroborates and Grignard reagents to form N, N-substituted α-tertiary amines (ATAs) is reported. Key to the success of this reaction is the unexpected oxidation of the α-aminoalkyltrifluoroborate to the corresponding iminium cation by commercially available Barluenga's reagent. Various Grignard reagents added smoothly, enabling the synthesis of a variety of ATAs, which are of high value for medicinal chemistry and drug development. Many of the reported examples are not accessible by the established methods.

6.
Org Lett ; 19(17): 4696-4699, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28813158

ABSTRACT

Photocatalytic coupling of aldehydes and silicon amine protocol (SLAP) reagents enables the simple, scalable synthesis of substituted morpholines, oxazepanes, thiomorpholines, and thiazepanes under continuous flow conditions. Key to the success of this process is the combination of an inexpensive organic photocatalyst (TPP) and a Lewis acid additive, which form an amine radical cation that is easily reduced to complete the catalytic cycle. Di- and trisubstituted SLAP reagents are formed in one step by an iron-catalyzed aminoetherification of olefins.

7.
Org Lett ; 19(7): 1910-1913, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28339212

ABSTRACT

The nickel-catalyzed reduction of secondary and tertiary amides to give amine products is reported. The transformation is tolerant of extensive variation with respect to the amide substrate, proceeds in the presence of esters and epimerizable stereocenters, and can be used to achieve the reduction of lactams. Moreover, this methodology provides a simple tactic for accessing medicinally relevant α-deuterated amines.


Subject(s)
Amides/chemistry , Amines , Catalysis , Molecular Structure , Nickel
8.
Org Lett ; 18(8): 1713-5, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27026179

ABSTRACT

The combination of aldehydes with newly designed HARP (halogen amine radical protocol) reagents gives access to α-substituted tetrahydronaphthyridines. By using different HARP reagents, various regioisomeric structures can be prepared in a single operation. These products, which are of high value in medicinal chemistry, are formed in a predictable manner via a formal Pictet-Spengler reaction of electron-poor pyridines that would not participate in the corresponding polar reactions.

SELECTION OF CITATIONS
SEARCH DETAIL