Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Immunity ; 55(10): 1856-1871.e6, 2022 10 11.
Article in English | MEDLINE | ID: mdl-35987201

ABSTRACT

Vaccines generate high-affinity antibodies by recruiting antigen-specific B cells to germinal centers (GCs), but the mechanisms governing the recruitment to GCs on secondary challenges remain unclear. Here, using preclinical SARS-CoV and HIV mouse models, we demonstrated that the antibodies elicited during primary humoral responses shaped the naive B cell recruitment to GCs during secondary exposures. The antibodies from primary responses could either enhance or, conversely, restrict the GC participation of naive B cells: broad-binding, low-affinity, and low-titer antibodies enhanced recruitment, whereas, by contrast, the high titers of high-affinity, mono-epitope-specific antibodies attenuated cognate naive B cell recruitment. Thus, the directionality and intensity of that effect was determined by antibody concentration, affinity, and epitope specificity. Circulating antibodies can, therefore, be important determinants of antigen immunogenicity. Future vaccines may need to overcome-or could, alternatively, leverage-the effects of circulating primary antibodies on subsequent naive B cell recruitment.


Subject(s)
B-Lymphocytes , Germinal Center , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antigens , Epitopes , Immunity, Humoral , Mice
2.
Proc Natl Acad Sci U S A ; 120(39): e2303455120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37722054

ABSTRACT

Cows produce antibodies with a disulfide-bonded antigen-binding domain embedded within ultralong heavy chain third complementarity determining regions. This "knob" domain is analogous to natural cysteine-rich peptides such as knottins in that it is small and stable but can accommodate diverse loops and disulfide bonding patterns. We immunized cattle with SARS-CoV-2 spike and found ultralong CDR H3 antibodies that could neutralize several viral variants at picomolar IC50 potencies in vitro and could protect from disease in vivo. The independent CDR H3 peptide knobs were expressed and maintained the properties of the parent antibodies. The knob interaction with SARS-CoV-2 spike was revealed by electron microscopy, X-ray crystallography, NMR spectroscopy, and mass spectrometry and established ultralong CDR H3-derived knobs as the smallest known recombinant independent antigen-binding fragment. Unlike other vertebrate antibody fragments, these knobs are not reliant on the immunoglobulin domain and have potential as a new class of therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Female , Animals , Cattle , Antibodies , Immunoglobulin Fab Fragments/genetics , Disulfides
3.
Viruses ; 16(8)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39205294

ABSTRACT

Quantifying viral growth rates is key to understanding evolutionary dynamics and the potential for mutants to escape antiviral drugs. Defining evolutionary escape paths and their impact on viral fitness allows for the development of drugs that are resistant to escape. In the case of HIV, combination antiretroviral therapy can successfully prevent or treat infection, but it relies on strict adherence to prevent escape. Here, we present a method termed QuickFit that enables the quantification of viral fitness by employing large numbers of parallel viral cultures to measure growth rates accurately. QuickFit consistently recapitulated HIV growth measurements obtained by traditional approaches, but with significantly higher throughput and lower rates of error. This method represents a promising tool for rapid and consistent evaluation of viral fitness.


Subject(s)
Virus Replication , Humans , High-Throughput Screening Assays/methods , HIV-1/genetics , HIV-1/physiology , HIV-1/growth & development , Real-Time Polymerase Chain Reaction/methods , Genetic Fitness , HIV Infections/virology , HIV Infections/drug therapy , HIV/genetics , HIV/physiology , HIV/growth & development , Cell Line
4.
bioRxiv ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39026813

ABSTRACT

Cellular and molecular characterization of immune responses elicited by influenza virus infection and seasonal vaccination have informed efforts to improve vaccine efficacy, breadth, and longevity. Here, we use negative stain electron microscopy polyclonal epitope mapping (nsEMPEM) to structurally characterize the humoral IgG antibody responses to hemagglutinin (HA) from human patients vaccinated with a seasonal quadrivalent flu vaccine or infected with influenza A viruses. Our data show that both vaccinated and infected patients had humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs, including the stem and anchor, which are targets for universal influenza vaccine design. Responses against H1 predominantly targeted the central stem epitope in infected patients and vaccinated donors, whereas head epitopes were more prominently targeted on H3. Responses against H3 were less abundant, but a greater diversity of H3 epitopes were targeted relative to H1. While our analysis is limited by sample size, on average, vaccinated donors responded to a greater diversity of epitopes on both H1 and H3 than infected patients. These data establish a baseline for assessing polyclonal antibody responses in vaccination and infection, providing context for future vaccine trials and emphasizing the importance of carefully designing vaccines to boost protective responses towards conserved epitopes.

5.
Cell Rep ; 43(5): 114171, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38717904

ABSTRACT

Influenza A virus subtype H2N2, which caused the 1957 influenza pandemic, remains a global threat. A recent phase 1 clinical trial investigating a ferritin nanoparticle vaccine displaying H2 hemagglutinin (HA) in H2-naive and H2-exposed adults enabled us to perform comprehensive structural and biochemical characterization of immune memory on the breadth and diversity of the polyclonal serum antibody response elicited. We temporally map the epitopes targeted by serum antibodies after vaccine prime and boost, revealing that previous H2 exposure results in higher responses to the variable HA head domain. In contrast, initial responses in H2-naive participants are dominated by antibodies targeting conserved epitopes. We use cryoelectron microscopy and monoclonal B cell isolation to describe the molecular details of cross-reactive antibodies targeting conserved epitopes on the HA head, including the receptor-binding site and a new site of vulnerability deemed the medial junction. Our findings accentuate the impact of pre-existing influenza exposure on serum antibody responses post-vaccination.


Subject(s)
Antibodies, Viral , Immunologic Memory , Influenza A Virus, H2N2 Subtype , Influenza Vaccines , Vaccination , Humans , Antibodies, Viral/immunology , Influenza Vaccines/immunology , Influenza A Virus, H2N2 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Antibody Formation/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Epitopes/immunology , Adult , B-Lymphocytes/immunology
6.
Science ; 384(6697): eadk0582, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753770

ABSTRACT

Germline-targeting (GT) HIV vaccine strategies are predicated on deriving broadly neutralizing antibodies (bnAbs) through multiple boost immunogens. However, as the recruitment of memory B cells (MBCs) to germinal centers (GCs) is inefficient and may be derailed by serum antibody-induced epitope masking, driving further B cell receptor (BCR) modification in GC-experienced B cells after boosting poses a challenge. Using humanized immunoglobulin knockin mice, we found that GT protein trimer immunogen N332-GT5 could prime inferred-germline precursors to the V3-glycan-targeted bnAb BG18 and that B cells primed by N332-GT5 were effectively boosted by either of two novel protein immunogens designed to have minimum cross-reactivity with the off-target V1-binding responses. The delivery of the prime and boost immunogens as messenger RNA lipid nanoparticles (mRNA-LNPs) generated long-lasting GCs, somatic hypermutation, and affinity maturation and may be an effective tool in HIV vaccine development.


Subject(s)
AIDS Vaccines , Broadly Neutralizing Antibodies , Germinal Center , HIV Antibodies , HIV-1 , Immunization, Secondary , Nanoparticles , mRNA Vaccines , Animals , Humans , Mice , AIDS Vaccines/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Cross Reactions , Gene Knock-In Techniques , Germinal Center/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , HIV-1/genetics , Liposomes , Memory B Cells/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/genetics , Somatic Hypermutation, Immunoglobulin , mRNA Vaccines/immunology , Female , Mice, Inbred C57BL
7.
STAR Protoc ; 4(3): 102476, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37516970

ABSTRACT

Electron microscopy-based polyclonal epitope mapping (EMPEM) can delineate epitope specificities of serum antibodies to a given antigen following vaccination or infection. Here, we present a protocol for the EMPEM method for rapid high-throughput assessment of antibody responses to glycoprotein antigens in vaccination and infection studies. We describe steps for antibody isolation and digestion, antigen complex and purification, and electron microscope imaging. We then detail procedures for processing and analysis of EMPEM data. For complete details on the use and execution of this protocol, please refer to Bianchi et al. (2018).1.


Subject(s)
Antibody Formation , Electrons , Epitope Mapping , Microscopy, Electron , Antibodies , Glycoproteins
8.
Cell Rep Methods ; 3(6): 100509, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37426749

ABSTRACT

Understanding antibody-antigen interactions in a polyclonal immune response in humans and animal models is critical for rational vaccine design. Current approaches typically characterize antibodies that are functionally relevant or highly abundant. Here, we use photo-cross-linking and single-particle electron microscopy to increase antibody detection and unveil epitopes of low-affinity and low-abundance antibodies, leading to a broader structural characterization of polyclonal immune responses. We employed this approach across three different viral glycoproteins and showed increased sensitivity of detection relative to currently used methods. Results were most noticeable in early and late time points of a polyclonal immune response. Additionally, the use of photo-cross-linking revealed intermediate antibody binding states and demonstrated a distinctive way to study antibody binding mechanisms. This technique can be used to structurally characterize the landscape of a polyclonal immune response of patients in vaccination or post-infection studies at early time points, allowing for rapid iterative design of vaccine immunogens.


Subject(s)
Antibodies, Neutralizing , Vaccines , Animals , Humans , Epitopes/chemistry , Vaccination
9.
bioRxiv ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37781590

ABSTRACT

Influenza A virus subtype H2N2, which caused the 1957 influenza pandemic, remains a global threat. A recent phase I clinical trial investigating a ferritin nanoparticle displaying H2 hemagglutinin in H2-naïve and H2-exposed adults. Therefore, we could perform comprehensive structural and biochemical characterization of immune memory on the breadth and diversity of the polyclonal serum antibody response elicited after H2 vaccination. We temporally map the epitopes targeted by serum antibodies after first and second vaccinations and show previous H2 exposure results in higher responses to the variable head domain of hemagglutinin while initial responses in H2-naïve participants are dominated by antibodies targeting conserved epitopes. We use cryo-EM and monoclonal B cell isolation to describe the molecular details of cross-reactive antibodies targeting conserved epitopes on the hemagglutinin head including the receptor binding site and a new site of vulnerability deemed the medial junction. Our findings accentuate the impact of pre-existing influenza exposure on serum antibody responses.

10.
Sci Adv ; 8(18): eabn2911, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35507649

ABSTRACT

Preexisting immunity against seasonal coronaviruses (CoVs) represents an important variable in predicting antibody responses and disease severity to severe acute respiratory syndrome CoV-2 (SARS-CoV-2) infections. We used electron microscopy-based polyclonal epitope mapping (EMPEM) to characterize the antibody specificities against ß-CoV spike proteins in prepandemic (PP) sera or SARS-CoV-2 convalescent (SC) sera. We observed that most PP sera had antibodies specific to seasonal human CoVs (HCoVs) OC43 and HKU1 spike proteins while the SC sera showed reactivity across all human ß-CoVs. Detailed molecular mapping of spike-antibody complexes revealed epitopes that were differentially targeted by preexisting antibodies and SC serum antibodies. Our studies provide an antigenic landscape to ß-HCoV spikes in the general population serving as a basis for cross-reactive epitope analyses in SARS-CoV-2-infected individuals.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Antibodies, Viral , Epitopes , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL