Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Hepatology ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37916976

ABSTRACT

BACKGROUND AND AIMS: HCC is the most common primary liver tumor, with an increasing incidence worldwide. HCC is a heterogeneous malignancy and usually develops in a chronically injured liver. The NF-κB signaling network consists of a canonical and a noncanonical branch. Activation of canonical NF-κB in HCC is documented. However, a functional and clinically relevant role of noncanonical NF-κB and its downstream effectors is not established. APPROACH AND RESULTS: Four human HCC cohorts (total n = 1462) and 4 mouse HCC models were assessed for expression and localization of NF-κB signaling components and activating ligands. In vitro , NF-κB signaling, proliferation, and cell death were measured, proving a pro-proliferative role of v-rel avian reticuloendotheliosis viral oncogene homolog B (RELB) activated by means of NF-κB-inducing kinase. In vivo , lymphotoxin beta was identified as the predominant inducer of RELB activation. Importantly, hepatocyte-specific RELB knockout in a murine HCC model led to a lower incidence compared to controls and lower maximal tumor diameters. In silico , RELB activity and RELB-directed transcriptomics were validated on the The Cancer Genome Atlas HCC cohort using inferred protein activity and Gene Set Enrichment Analysis. In RELB-active HCC, pathways mediating proliferation were significantly activated. In contrast to v-rel avian reticuloendotheliosis viral oncogene homolog A, nuclear enrichment of noncanonical RELB expression identified patients with a poor prognosis in an etiology-independent manner. Moreover, RELB activation was associated with malignant features metastasis and recurrence. CONCLUSIONS: This study demonstrates a prognostically relevant, etiology-independent, and cross-species consistent activation of a lymphotoxin beta/LTßR/RELB axis in hepatocarcinogenesis. These observations may harbor broad implications for HCC, including possible clinical exploitation.

2.
Int J Cancer ; 152(7): 1304-1313, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36121667

ABSTRACT

Patient derived organoids closely resemble the biology of tissues and tumors. They are enabling ex vivo modeling of human diseases and dissecting key features of tumor biology like anatomical diversity or inter- and intra-tumoral heterogeneity. In the last years, organoids were established as models for drug discovery and explored to guide clinical decision making. In this review, we discuss the recent developments in organoid based research, elaborating on the developments in colorectal cancer as a prime example. We focus our review on the role of organoids to decode cancer cell dynamics and tumor microenvironmental complexity with the underlying bi-directional crosstalk. Additionally, advancements in the development of living biobanks, screening approaches, organoid based precision medicine and challenges of co-clinical trials are highlighted. We discuss ongoing efforts to overcome challenges that the field faces and indicate potential future directions.


Subject(s)
Colorectal Neoplasms , Organoids , Humans , Organoids/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology
3.
Int J Mol Sci ; 24(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37108564

ABSTRACT

The paracaspase MALT1 is a crucial regulator of immune responses in various cellular contexts. Recently, there is increasing evidence suggesting that MALT1 might represent a novel key player in mucosal inflammation. However, the molecular mechanisms underlying this process and the targeted cell population remain unclear. In this study, we investigate the role of MALT1 proteolytic activity in the context of mucosal inflammation. We demonstrate a significant enrichment of MALT1 gene and protein expression in colonic epithelial cells of UC patients, as well as in the context of experimental colitis. Mechanistically we demonstrate that MALT1 protease function inhibits ferroptosis, a form of iron-dependent cell death, upstream of NF-κB signaling, which can promote inflammation and tissue damage in IBD. We further show that MALT1 activity contributes to STAT3 signaling, which is essential for the regeneration of the intestinal epithelium after injury. In summary, our data strongly suggests that the protease function of MALT1 plays a critical role in the regulation of immune and inflammatory responses, as well as mucosal healing. Understanding the mechanisms by which MALT1 protease function regulates these processes may offer novel therapeutic targets for the treatment of IBD and other inflammatory diseases.


Subject(s)
Inflammatory Bowel Diseases , Signal Transduction , Humans , Inflammation , Inflammatory Bowel Diseases/genetics , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , NF-kappa B/metabolism , Proteolysis , Epithelial Cells
4.
Gut ; 71(12): 2502-2517, 2022 12.
Article in English | MEDLINE | ID: mdl-35477539

ABSTRACT

OBJECTIVE: Stroma-rich tumours represent a poor prognostic subtype in stage II/III colon cancer (CC), with high relapse rates and limited response to standard adjuvant chemotherapy. DESIGN: To address the lack of efficacious therapeutic options for patients with stroma-rich CC, we stratified our human tumour cohorts according to stromal content, enabling identification of the biology underpinning relapse and potential therapeutic vulnerabilities specifically within stroma-rich tumours that could be exploited clinically. Following human tumour-based discovery and independent clinical validation, we use a series of in vitro and stroma-rich in vivo models to test and validate the therapeutic potential of elevating the biology associated with reduced relapse in human tumours. RESULTS: By performing our analyses specifically within the stroma-rich/high-fibroblast (HiFi) subtype of CC, we identify and validate the clinical value of a HiFi-specific prognostic signature (HPS), which stratifies tumours based on STAT1-related signalling (High-HPS v Low-HPS=HR 0.093, CI 0.019 to 0.466). Using in silico, in vitro and in vivo models, we demonstrate that the HPS is associated with antigen processing and presentation within discrete immune lineages in stroma-rich CC, downstream of double-stranded RNA and viral response signalling. Treatment with the TLR3 agonist poly(I:C) elevated the HPS signalling and antigen processing phenotype across in vitro and in vivo models. In an in vivo model of stroma-rich CC, poly(I:C) treatment significantly increased systemic cytotoxic T cell activity (p<0.05) and reduced liver metastases (p<0.0002). CONCLUSION: This study reveals new biological insight that offers a novel therapeutic option to reduce relapse rates in patients with the worst prognosis CC.


Subject(s)
Biomarkers, Tumor , Colonic Neoplasms , Humans , Biomarkers, Tumor/genetics , Stromal Cells/pathology , Neoplasm Recurrence, Local/prevention & control , Neoplasm Recurrence, Local/pathology , Colonic Neoplasms/pathology , Prognosis
5.
EMBO J ; 32(23): 3079-95, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24185900

ABSTRACT

Here, we show that expression of ZNF281/ZBP-99 is controlled by SNAIL and miR-34a/b/c in a coherent feed-forward loop: the epithelial-mesenchymal transition (EMT) inducing factor SNAIL directly induces ZNF281 transcription and represses miR-34a/b/c, thereby alleviating ZNF281 mRNA from direct down-regulation by miR-34. Furthermore, p53 activation resulted in a miR-34a-dependent repression of ZNF281. Ectopic ZNF281 expression in colorectal cancer (CRC) cells induced EMT by directly activating SNAIL, and was associated with increased migration/invasion and enhanced ß-catenin activity. Furthermore, ZNF281 induced the stemness markers LGR5 and CD133, and increased sphere formation. Conversely, experimental down-regulation of ZNF281 resulted in mesenchymal-epithelial transition (MET) and inhibition of migration/invasion, sphere formation and lung metastases in mice. Ectopic c-MYC induced ZNF281 protein expression in a SNAIL-dependent manner. Experimental inactivation of ZNF281 prevented EMT induced by c-MYC or SNAIL. In primary CRC samples, expression of ZNF281 increased during tumour progression and correlated with recurrence. Taken together, these results identify ZNF281 as a component of EMT-regulating networks, which contribute to metastasis formation in CRC.


Subject(s)
Breast Neoplasms/pathology , Colorectal Neoplasms/pathology , DNA-Binding Proteins/metabolism , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Trans-Activators/metabolism , Transcription Factors/metabolism , Animals , Base Sequence , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Case-Control Studies , Cell Movement , Cells, Cultured , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Male , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Sequence Data , Neoplasm Invasiveness , Repressor Proteins , Sequence Homology, Nucleic Acid , Snail Family Transcription Factors , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Tumor Suppressor Protein p53 , Wound Healing
6.
J Pathol ; 238(2): 141-51, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26414675

ABSTRACT

Murine models of intestinal cancer are powerful tools to recapitulate human intestinal cancer, understand its biology and test therapies. With recent developments identifying the importance of the tumour microenvironment and the potential for immunotherapy, autochthonous genetically engineered mouse models (GEMMs) will remain an important part of preclinical studies for the foreseeable future. This review will provide an overview of the current mouse models of intestinal cancer, from the Apc(Min/+) mouse, which has been used for over 25 years, to the latest 'state-of-the-art' organoid models. We discuss here how these models have been used to define fundamental processes involved in tumour initiation and the attempts to generate metastatic models, which is the ultimate cause of cancer mortality. Together these models will provide key insights to understand this complex disease and hopefully will lead to the discovery of new therapeutic strategies.


Subject(s)
Colorectal Neoplasms/genetics , Disease Models, Animal , Genes, APC , Adenocarcinoma/genetics , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli Protein/deficiency , Adenomatous Polyposis Coli Protein/genetics , Animals , Carcinogenesis/genetics , Forecasting , Humans , Mice , Mice, Transgenic , Mutation/genetics , Neoplasm Metastasis , Neoplasm Transplantation/methods
7.
Biochim Biophys Acta ; 1849(5): 544-53, 2015 May.
Article in English | MEDLINE | ID: mdl-24727092

ABSTRACT

In the past ten years microRNAs (miRNAs) have been widely implicated as components of tumor suppressive and oncogenic pathways. Also the proto-typic oncogene c-MYC has been connected to miRNAs. The c-MYC gene is activated in approximately half of all tumors, and its product, the c-MYC transcription factor, regulates numerous processes e.g. cell cycle progression, metabolism, epithelial-mesenchymal transition (EMT), metastasis, stemness, and angiogenesis, thereby facilitating tumor initiation and progression. c-MYC target-genes, which mediate these functions of c-MYC, represent a complex network of protein- and non-coding RNAs, including numerous miRNAs. For example, c-MYC directly regulates expression of the miR-17-92 cluster, miR-34a, miR-15a/16-1 and miR-9. Moreover, the expression and activity of c-MYC itself are under the control of miRNAs. Here, we survey how these networks mediate and regulate c-MYC functions. In the future, miRNAs connected to c-MYC may be used for diagnostic and therapeutic approaches. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.


Subject(s)
Cell Transformation, Neoplastic/genetics , MicroRNAs/biosynthesis , Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Neoplasms/pathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology
9.
Br J Cancer ; 113(10): 1460-6, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26469831

ABSTRACT

BACKGROUND: Frequent disease relapse and a lack of effective therapies result in a very poor outcome in pancreatic ductal adenocarcinoma (PDAC) patients. Thus, identification of prognostic biomarkers and possible therapeutic targets is essential. Besides their function in cell-cell adhesion, desmogleins may play a role in tumour progression and invasion that has not been investigated in PDAC to date. This study evaluated desmoglein expression as a biomarker in PDAC. METHODS: Using immunohistochemistry, we examined desmoglein 1 (DSG1), desmoglein 2 (DSG2) and desmoglein 3 (DSG3) expression in the tumour tissue of 165 resected PDAC cases. Expression levels were correlated to the patients' clinicopathological parameters and postoperative survival times. We confirmed these results in two independent gene expression data sets. RESULTS: A total of 36% of the tumours showed high DSG3 expression that correlated significantly with shorter patient survival (P=0.011) and poor tumour differentiation (P<0.001), whereas no such association was detected for DSG1 or DSG2. In RNA-Seq data and in microarray expression data, high DSG3 expression correlated significantly with poor survival (P=0.000356 and P=0.00499). CONCLUSIONS: We identify DSG3 as a negative prognostic biomarker in resected PDAC, as high DSG3 expression is associated with poor overall survival and poor tumour-specific survival. These findings suggest DSG3 and its downstream signalling pathways as possible therapeutic targets in DSG3-expressing PDAC.


Subject(s)
Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/surgery , Desmoglein 1/genetics , Desmoglein 1/metabolism , Pancreatic Neoplasms/surgery , Adult , Aged , Aged, 80 and over , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Desmoglein 2/genetics , Desmoglein 2/metabolism , Desmoglein 3/genetics , Desmoglein 3/metabolism , Female , Humans , Male , Middle Aged , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Prognosis , Sequence Analysis, RNA , Survival Analysis , Up-Regulation
10.
Proc Natl Acad Sci U S A ; 109(45): 18384-9, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23090995

ABSTRACT

A chronic inflammatory microenvironment favors tumor progression through molecular mechanisms that are still incompletely defined. In inflammation-induced skin cancers, IL-1 receptor- or caspase-1-deficient mice, or mice specifically deficient for the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) in myeloid cells, had reduced tumor incidence, pointing to a role for IL-1 signaling and inflammasome activation in tumor development. However, mice fully deficient for ASC were not protected, and mice specifically deficient for ASC in keratinocytes developed more tumors than controls, suggesting that, in contrast to its proinflammatory role in myeloid cells, ASC acts as a tumor-suppressor in keratinocytes. Accordingly, ASC protein expression was lost in human cutaneous squamous cell carcinoma, but not in psoriatic skin lesions. Stimulation of primary mouse keratinocytes or the human keratinocyte cell line HaCaT with UVB induced an ASC-dependent phosphorylation of p53 and expression of p53 target genes. In HaCaT cells, ASC interacted with p53 at the endogenous level upon UVB irradiation. Thus, ASC in different tissues may influence tumor growth in opposite directions: it has a proinflammatory role in infiltrating cells that favors tumor development, but it also limits keratinocyte proliferation in response to noxious stimuli, possibly through p53 activation, which helps suppressing tumors.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , Epithelium/pathology , Inflammasomes/metabolism , Skin Neoplasms/pathology , Skin/pathology , 9,10-Dimethyl-1,2-benzanthracene , Animals , Apoptosis Regulatory Proteins , CARD Signaling Adaptor Proteins , Caspase 1/deficiency , Caspase 1/metabolism , Cell Proliferation , Cell Transformation, Neoplastic/pathology , Cytokines/biosynthesis , Cytoskeletal Proteins/deficiency , Down-Regulation , Epithelium/metabolism , Humans , Inflammation/pathology , Keratinocytes/metabolism , Keratinocytes/pathology , Mice , Mice, Knockout , Myeloid Cells/metabolism , Myeloid Cells/pathology , Neoplasms, Squamous Cell/pathology , Organ Specificity , Receptors, Interleukin-1/deficiency , Receptors, Interleukin-1/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/prevention & control , Tetradecanoylphorbol Acetate , Tumor Microenvironment , Tumor Suppressor Protein p53/metabolism
11.
Cell Rep ; 43(6): 114270, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38787726

ABSTRACT

Stem cells play pivotal roles in maintaining intestinal homeostasis, orchestrating regeneration, and in key steps of colorectal cancer (CRC) initiation and progression. Intriguingly, adult stem cells are reduced during many of these processes. On the contrary, primitive fetal programs, commonly detected in development, emerge during tissue repair, CRC metastasis, and therapy resistance. Recent findings indicate a dynamic continuum between adult and fetal stem cell programs. We discuss critical mechanisms facilitating the plasticity between stem cell states and highlight the heterogeneity observed upon the appearance of fetal-like states. We focus on therapeutic opportunities that arise by targeting fetal-like CRC cells and how those concepts can be translated into the clinic.


Subject(s)
Colorectal Neoplasms , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/therapy , Humans , Animals , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Fetal Stem Cells/metabolism
12.
Oncoimmunology ; 13(1): 2330194, 2024.
Article in English | MEDLINE | ID: mdl-38516270

ABSTRACT

Colorectal cancer (CRC) is the third most prevalent cancer worldwide with a high mortality rate (20-30%), especially due to metastasis to adjacent organs. Clinical responses to chemotherapy, radiation, targeted and immunotherapies are limited to a subset of patients making metastatic CRC (mCRC) difficult to treat. To understand the therapeutic modulation of immune response in mCRC, we have used a genetically engineered mouse model (GEMM), "KPN", which resembles the human 'CMS4'-like subtype. We show here that transforming growth factor (TGF-ß1), secreted by KPN organoids, increases cancer cell proliferation, and inhibits splenocyte activation in vitro. TGF-ß1 also inhibits activation of naive but not pre-activated T cells, suggesting differential effects on specific immune cells. In vivo, the inhibition of TGF-ß inflames the KPN tumors, causing infiltration of T cells, monocytes and monocytic intermediates, while reducing neutrophils and epithelial cells. Co-inhibition of TGF-ß and PD-L1 signaling further enhances cytotoxic CD8+T cells and upregulates innate immune response and interferon gene signatures. However, simultaneous upregulation of cancer-related metabolic genes correlated with limited control of tumor burden and/or progression despite combination treatment. Our study illustrates the importance of using GEMMs to predict better immunotherapies for mCRC.


Subject(s)
Colonic Neoplasms , Rectal Neoplasms , Mice , Animals , Humans , Transforming Growth Factor beta1 , Transforming Growth Factor beta/metabolism , Interferons , B7-H1 Antigen/genetics , T-Lymphocytes, Cytotoxic/metabolism
13.
Clin Cancer Res ; 30(8): 1518-1529, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38493804

ABSTRACT

PURPOSE: The current approach for molecular subtyping of colon cancer relies on gene expression profiling, which is invasive and has limited ability to reveal dynamics and spatial heterogeneity. Molecular imaging techniques, such as PET, present a noninvasive alternative for visualizing biological information from tumors. However, the factors influencing PET imaging phenotype, the suitable PET radiotracers for differentiating tumor subtypes, and the relationship between PET phenotypes and tumor genotype or gene expression-based subtyping remain unknown. EXPERIMENTAL DESIGN: In this study, we conducted 126 PET scans using four different metabolic PET tracers, [18F]fluorodeoxy-D-glucose ([18F]FDG), O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET), 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT), and [11C]acetate ([11C]ACE), using a spectrum of five preclinical colon cancer models with varying genetics (BMT, AKPN, AK, AKPT, KPN), at three sites (subcutaneous, orthograft, autochthonous) and at two tumor stages (primary vs. metastatic). RESULTS: The results demonstrate that imaging signatures are influenced by genotype, tumor environment, and stage. PET imaging signatures exhibited significant heterogeneity, with each cancer model displaying distinct radiotracer profiles. Oncogenic Kras and Apc loss showed the most distinctive imaging features, with [18F]FLT and [18F]FET being particularly effective, respectively. The tissue environment notably impacted [18F]FDG uptake, and in a metastatic model, [18F]FET demonstrated higher uptake. CONCLUSIONS: By examining factors contributing to PET-imaging phenotype, this study establishes the feasibility of noninvasive molecular stratification using multiplex radiotracer PET. It lays the foundation for further exploration of PET-based subtyping in human cancer, thereby facilitating noninvasive molecular diagnosis.


Subject(s)
Colonic Neoplasms , Fluorodeoxyglucose F18 , Humans , Dideoxynucleosides , Positron-Emission Tomography/methods , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/genetics , Radiopharmaceuticals
14.
Cancer Res Commun ; 4(2): 588-606, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38358352

ABSTRACT

Neutrophils are a highly heterogeneous cellular population. However, a thorough examination of the different transcriptional neutrophil states between health and malignancy has not been performed. We utilized single-cell RNA sequencing of human and murine datasets, both publicly available and independently generated, to identify neutrophil transcriptomic subtypes and developmental lineages in health and malignancy. Datasets of lung, breast, and colorectal cancer were integrated to establish and validate neutrophil gene signatures. Pseudotime analysis was used to identify genes driving neutrophil development from health to cancer. Finally, ligand-receptor interactions and signaling pathways between neutrophils and other immune cell populations in primary colorectal cancer and metastatic colorectal cancer were investigated. We define two main neutrophil subtypes in primary tumors: an activated subtype sharing the transcriptomic signatures of healthy neutrophils; and a tumor-specific subtype. This signature is conserved in murine and human cancer, across different tumor types. In colorectal cancer metastases, neutrophils are more heterogeneous, exhibiting additional transcriptomic subtypes. Pseudotime analysis implicates IL1ß/CXCL8/CXCR2 axis in the progression of neutrophils from health to cancer and metastasis, with effects on T-cell effector function. Functional analysis of neutrophil-tumoroid cocultures and T-cell proliferation assays using orthotopic metastatic mouse models lacking Cxcr2 in neutrophils support our transcriptional analysis. We propose that the emergence of metastatic-specific neutrophil subtypes is driven by the IL1ß/CXCL8/CXCR2 axis, with the evolution of different transcriptomic signals that impair T-cell function at the metastatic site. Thus, a better understanding of neutrophil transcriptomic programming could optimize immunotherapeutic interventions into early and late interventions, targeting different neutrophil states. SIGNIFICANCE: We identify two recurring neutrophil populations and demonstrate their staged evolution from health to malignancy through the IL1ß/CXCL8/CXCR2 axis, allowing for immunotherapeutic neutrophil-targeting approaches to counteract immunosuppressive subtypes that emerge in metastasis.


Subject(s)
Colorectal Neoplasms , Neutrophils , Animals , Mice , Humans , Neoplasm Recurrence, Local/metabolism , Signal Transduction/genetics , Colorectal Neoplasms/genetics , Single-Cell Analysis
15.
J Exp Clin Cancer Res ; 43(1): 64, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38424636

ABSTRACT

Colorectal cancer (CRC) is a heterogenous malignancy underpinned by dysregulation of cellular signaling pathways. Previous literature has implicated aberrant JAK/STAT3 signal transduction in the development and progression of solid tumors. In this study we investigate the effectiveness of inhibiting JAK/STAT3 in diverse CRC models, establish in which contexts high pathway expression is prognostic and perform in depth analysis underlying phenotypes. In this study we investigated the use of JAK inhibitors for anti-cancer activity in CRC cell lines, mouse model organoids and patient-derived organoids. Immunohistochemical staining of the TransSCOT clinical trial cohort, and 2 independent large retrospective CRC patient cohorts was performed to assess the prognostic value of JAK/STAT3 expression. We performed mutational profiling, bulk RNASeq and NanoString GeoMx® spatial transcriptomics to unravel the underlying biology of aberrant signaling. Inhibition of signal transduction with JAK1/2 but not JAK2/3 inhibitors reduced cell viability in CRC cell lines, mouse, and patient derived organoids (PDOs). In PDOs, reduced Ki67 expression was observed post-treatment. A highly significant association between high JAK/STAT3 expression within tumor cells and reduced cancer-specific survival in patients with high stromal invasion (TSPhigh) was identified across 3 independent CRC patient cohorts, including the TrasnSCOT clinical trial cohort. Patients with high phosphorylated STAT3 (pSTAT3) within the TSPhigh group had higher influx of CD66b + cells and higher tumoral expression of PDL1. Bulk RNAseq of full section tumors showed enrichment of NFκB signaling and hypoxia in these cases. Spatial deconvolution through GeoMx® demonstrated higher expression of checkpoint and hypoxia-associated genes in the tumor (pan-cytokeratin positive) regions, and reduced lymphocyte receptor signaling in the TME (pan-cytokeratin- and αSMA-) and αSMA (pan-cytokeratin- and αSMA +) areas. Non-classical fibroblast signatures were detected across αSMA + regions in cases with high pSTAT3. Therefore, in this study we have shown that inhibition of JAK/STAT3 represents a promising therapeutic strategy for patients with stromal-rich CRC tumors. High expression of JAK/STAT3 proteins within both tumor and stromal cells predicts poor outcomes in CRC, and aberrant signaling is associated with distinct spatially-dependant differential gene expression.


Subject(s)
Colorectal Neoplasms , Humans , Animals , Mice , Retrospective Studies , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Signal Transduction , Hypoxia , Keratins/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Cell Line, Tumor
16.
Nat Commun ; 14(1): 5211, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37626054

ABSTRACT

The molecular basis of disease progression from UV-induced precancerous actinic keratosis (AK) to malignant invasive cutaneous squamous cell carcinoma (cSCC) and potentially lethal metastatic disease remains unclear. DNA sequencing studies have revealed a massive mutational burden but have yet to illuminate mechanisms of disease progression. Here we perform RNAseq transcriptomic profiling of 110 patient samples representing normal sun-exposed skin, AK, primary and metastatic cSCC and reveal a disease continuum from a differentiated to a progenitor-like state. This is accompanied by the orchestrated suppression of master regulators of epidermal differentiation, dynamic modulation of the epidermal differentiation complex, remodelling of the immune landscape and an increase in the preponderance of tumour specific keratinocytes. Comparative systems analysis of human cSCC coupled with the generation of genetically engineered murine models reveal that combinatorial sequential inactivation of the tumour suppressor genes Tgfbr2, Trp53, and Notch1 coupled with activation of Ras signalling progressively drives cSCC progression along a differentiated to progenitor axis. Taken together we provide a comprehensive map of the cSCC disease continuum and reveal potentially actionable events that promote and accompany disease progression.


Subject(s)
Carcinoma, Squamous Cell , Keratosis, Actinic , Skin Neoplasms , Humans , Animals , Mice , Carcinoma, Squamous Cell/genetics , Skin Neoplasms/genetics , Cell Differentiation , Disease Progression , Gene Expression Profiling
17.
Cancers (Basel) ; 14(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36077793

ABSTRACT

Colorectal cancer (CRC) is among the deadliest cancers worldwide, with metastasis being the main cause of patient mortality. During CRC progression the complex tumor ecosystem changes in its composition at virtually every stage. However, clonal dynamics and associated niche-dependencies at these stages are unknown. Hence, it is of importance to utilize models that faithfully recapitulate human CRC to define its clonal dynamics. We used an optical barcoding approach in mouse-derived organoids (MDOs) that revealed niche-dependent clonal selection. Our findings highlight that clonal selection is controlled by a site-specific niche, which critically contributes to cancer heterogeneity and has implications for therapeutic intervention.

18.
Sci Immunol ; 7(71): eabh1873, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35622904

ABSTRACT

T cells become functionally exhausted in tumors, limiting T cell-based immunotherapies. Although several transcription factors regulating the exhausted T (Tex) cell differentiation are known, comparatively little is known about the regulators of Tex cell survival. Here, we reported that the regulator of G protein signaling 16 (Rgs-16) suppressed Tex cell survival in tumors. By performing lineage tracing using reporter mice in which mCherry marked Rgs16-expressing cells, we identified that Rgs16+CD8+ tumor-infiltrating lymphocytes (TILs) were terminally differentiated, expressed low levels of T cell factor 1 (Tcf1), and underwent apoptosis as early as 6 days after the onset of Rgs16 expression. Rgs16 deficiency inhibited CD8+ T cell apoptosis and promoted antitumor effector functions of CD8+ T cells. Furthermore, Rgs16 deficiency synergized with programmed cell death protein 1 (PD-1) blockade to enhance antitumor CD8+ T cell responses. Proteomics revealed that Rgs16 interacted with the scaffold protein IQGAP1, suppressed the recruitment of Ras and B-Raf, and inhibited Erk1 activation. Rgs16 deficiency enhanced antitumor CD8+ TIL survival in an Erk1-dependent manner. Loss of function of Erk1 decreased antitumor functions of Rgs16-deficient CD8+ T cells. RGS16 mRNA expression levels in CD8+ TILs of patients with melanoma negatively correlated with genes associated with T cell stemness, such as SELL, TCF7, and IL7R, and predicted low responses to PD-1 blockade. This study uncovers Rgs16 as an inhibitor of Tex cell survival in tumors and has implications for improving T cell-based immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , RGS Proteins/immunology , Animals , Cell Differentiation , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Mice
19.
Nat Commun ; 13(1): 7551, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36477656

ABSTRACT

The pro-tumourigenic role of epithelial TGFß signalling in colorectal cancer (CRC) is controversial. Here, we identify a cohort of born to be bad early-stage (T1) colorectal tumours, with aggressive features and a propensity to disseminate early, that are characterised by high epithelial cell-intrinsic TGFß signalling. In the presence of concurrent Apc and Kras mutations, activation of epithelial TGFß signalling rampantly accelerates tumourigenesis and share transcriptional signatures with those of the born to be bad T1 human tumours and predicts recurrence in stage II CRC. Mechanistically, epithelial TGFß signalling induces a growth-promoting EGFR-signalling module that synergises with mutant APC and KRAS to drive MAPK signalling that re-sensitise tumour cells to MEK and/or EGFR inhibitors. Together, we identify epithelial TGFß signalling both as a determinant of early dissemination and a potential therapeutic vulnerability of CRC's with born to be bad traits.


Subject(s)
Apoptosis , Transforming Growth Factor beta , Humans , Apoptosis/genetics
20.
BMC Cancer ; 11: 137, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-21492476

ABSTRACT

BACKGROUND: Inactivating mutations of SMAD4 are frequent in metastatic colorectal carcinomas. In previous analyses, we were able to show that restoration of Smad4 expression in Smad4-deficient SW480 human colon carcinoma cells was adequate to suppress tumorigenicity and invasive potential, whereas in vitro cell growth was not affected. Using this cellular model system, we searched for new Smad4 targets comparing nuclear subproteomes derived from Smad4 re-expressing and Smad4 negative SW480 cells. METHODS: High resolution two-dimensional (2D) gel electrophoresis was applied to identify novel Smad4 targets in the nuclear subproteome of Smad4 re-expressing SW480 cells. The identified candidate protein Keratin 23 was further characterized by tandem affinity purification. Immunoprecipitation, subfractionation and immunolocalization studies in combination with RNAi were used to validate the Keratin 23-14-3-3ε interaction. RESULTS: We identified keratins 8 and 18, heat shock proteins 60 and 70, plectin 1, as well as 14-3-3ε and γ as novel proteins present in the KRT23-interacting complex. Co-immunoprecipitation and subfractionation analyses as well as immunolocalization studies in our Smad4-SW480 model cells provided further evidence that KRT23 associates with 14-3-3ε and that Smad4 dependent KRT23 up-regulation induces a shift of the 14-3-3ε protein from a nuclear to a cytoplasmic localization. CONCLUSION: Based on our findings we propose a new regulatory circuitry involving Smad4 dependent up-regulation of KRT23 (directly or indirectly) which in turn modulates the interaction between KRT23 and 14-3-3ε leading to a cytoplasmic sequestration of 14-3-3ε. This cytoplasmic KRT23-14-3-3 interaction may alter the functional status of the well described 14-3-3 scaffold protein, known to regulate key cellular processes, such as signal transduction, cell cycle control, and apoptosis and may thus be a previously unappreciated facet of the Smad4 tumor suppressive circuitry.


Subject(s)
14-3-3 Proteins/metabolism , Keratins, Type I/metabolism , Smad4 Protein/metabolism , 14-3-3 Proteins/genetics , Blotting, Western , Cell Line, Tumor , Cell Nucleus/metabolism , Chaperonin 60/metabolism , Cytoplasm/metabolism , Electrophoresis, Gel, Two-Dimensional , HEK293 Cells , HSP70 Heat-Shock Proteins/metabolism , Humans , Immunoprecipitation , Keratin-18/metabolism , Keratin-8/metabolism , Keratins, Type I/genetics , Microscopy, Confocal , Plectin/metabolism , Protein Binding , RNA Interference , Smad4 Protein/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL