Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 593(7860): 607-611, 2021 05.
Article in English | MEDLINE | ID: mdl-33883744

ABSTRACT

As organelles of the innate immune system, inflammasomes activate caspase-1 and other inflammatory caspases that cleave gasdermin D (GSDMD). Caspase-1 also cleaves inactive precursors of the interleukin (IL)-1 family to generate mature cytokines such as IL-1ß and IL-18. Cleaved GSDMD forms transmembrane pores to enable the release of IL-1 and to drive cell lysis through pyroptosis1-9. Here we report cryo-electron microscopy structures of the pore and the prepore of GSDMD. These structures reveal the different conformations of the two states, as well as extensive membrane-binding elements including a hydrophobic anchor and three positively charged patches. The GSDMD pore conduit is predominantly negatively charged. By contrast, IL-1 precursors have an acidic domain that is proteolytically removed by caspase-110. When permeabilized by GSDMD pores, unlysed liposomes release positively charged and neutral cargoes faster than negatively charged cargoes of similar sizes, and the pores favour the passage of IL-1ß and IL-18 over that of their precursors. Consistent with these findings, living-but not pyroptotic-macrophages preferentially release mature IL-1ß upon perforation by GSDMD. Mutation of the acidic residues of GSDMD compromises this preference, hindering intracellular retention of the precursor and secretion of the mature cytokine. The GSDMD pore therefore mediates IL-1 release by electrostatic filtering, which suggests the importance of charge in addition to size in the transport of cargoes across this large channel.


Subject(s)
Inflammasomes/chemistry , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Macrophages/metabolism , Phosphate-Binding Proteins/chemistry , Animals , Caspase 1/metabolism , Cryoelectron Microscopy , Humans , Interleukin-1/metabolism , Mice, Inbred C57BL , Protein Precursors/metabolism , Protein Structure, Quaternary , Static Electricity
2.
Mol Cell ; 74(6): 1164-1174.e4, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31054975

ABSTRACT

Post-translational modifications of the RNA polymerase II C-terminal domain (CTD) coordinate the transcription cycle. Crosstalk between different modifications is poorly understood. Here, we show how acetylation of lysine residues at position 7 of characteristic heptad repeats (K7ac)-only found in higher eukaryotes-regulates phosphorylation of serines at position 5 (S5p), a conserved mark of polymerases initiating transcription. We identified the regulator of pre-mRNA-domain-containing (RPRD) proteins as reader proteins of K7ac. K7ac enhanced CTD peptide binding to the CTD-interacting domain (CID) of RPRD1A and RPRD1B proteins in isothermal calorimetry and molecular modeling experiments. Deacetylase inhibitors increased K7ac- and decreased S5-phosphorylated polymerases, consistent with acetylation-dependent S5 dephosphorylation by an RPRD-associated S5 phosphatase. Consistent with this model, RPRD1B knockdown increased S5p but enhanced K7ac, indicating that RPRD proteins recruit K7 deacetylases, including HDAC1. We also report autoregulatory crosstalk between K7ac and S5p via RPRD proteins and their interactions with acetyl- and phospho-eraser proteins.


Subject(s)
Cell Cycle Proteins/metabolism , Neoplasm Proteins/metabolism , Protein Isoforms/metabolism , Protein Processing, Post-Translational , RNA Polymerase II/metabolism , Acetylation , Amino Acid Sequence , Animals , Binding Sites , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , HEK293 Cells , Humans , Mice , Models, Molecular , NIH 3T3 Cells , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Phosphorylation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/genetics , RNA Polymerase II/chemistry , RNA Polymerase II/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Thermodynamics
3.
Blood ; 2024 04 21.
Article in English | MEDLINE | ID: mdl-38643492

ABSTRACT

Secondary kinase domain mutations in BCR::ABL1 represent the most common cause of resistance to tyrosine kinase inhibitor (TKI) therapy in chronic myeloid leukemia patients. The first five approved BCR::ABL1 TKIs target the ATP-binding pocket. Mutations confer resistance to these ATP-competitive TKIs and those approved for other malignancies by decreasing TKI affinity and/or increasing ATP affinity. Asciminib, the first highly active allosteric TKI approved for any malignancy, targets an allosteric regulatory pocket in the BCR::ABL1 kinase C-lobe. As a non-ATP-competitive inhibitor, the activity of asciminib is predicted to be impervious to increases in ATP affinity. Here we report several known mutations that confer resistance to ATP-competitive TKIs in the BCR::ABL1 kinase N-lobe that are distant from the asciminib binding pocket yet unexpectedly confer in vitro resistance to asciminib. Among these is BCR::ABL1 M244V, which confers clinical resistance even to escalated asciminib doses. We demonstrate that BCR::ABL1 M244V does not impair asciminib binding, thereby invoking a novel mechanism of resistance. Molecular dynamics simulations of the M244V substitution implicate stabilization of an active kinase conformation through impact on the -C helix as a mechanism of resistance. These N-lobe mutations may compromise the clinical activity of ongoing combination studies of asciminib with ATP-competitive TKIs.

4.
Nature ; 586(7827): 145-150, 2020 10.
Article in English | MEDLINE | ID: mdl-32968273

ABSTRACT

Natural products serve as chemical blueprints for most antibiotics in clinical use. The evolutionary process by which these molecules arise is inherently accompanied by the co-evolution of resistance mechanisms that shorten the clinical lifetime of any given class of antibiotics1. Virginiamycin acetyltransferase (Vat) enzymes are resistance proteins that provide protection against streptogramins2, potent antibiotics against Gram-positive bacteria that inhibit the bacterial ribosome3. Owing to the challenge of selectively modifying the chemically complex, 23-membered macrocyclic scaffold of group A streptogramins, analogues that overcome the resistance conferred by Vat enzymes have not been previously developed2. Here we report the design, synthesis, and antibacterial evaluation of group A streptogramin antibiotics with extensive structural variability. Using cryo-electron microscopy and forcefield-based refinement, we characterize the binding of eight analogues to the bacterial ribosome at high resolution, revealing binding interactions that extend into the peptidyl tRNA-binding site and towards synergistic binders that occupy the nascent peptide exit tunnel. One of these analogues has excellent activity against several streptogramin-resistant strains of Staphylococcus aureus, exhibits decreased rates of acetylation in vitro, and is effective at lowering bacterial load in a mouse model of infection. Our results demonstrate that the combination of rational design and modular chemical synthesis can revitalize classes of antibiotics that are limited by naturally arising resistance mechanisms.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Drug Design , Drug Resistance, Bacterial/drug effects , Streptogramin Group A/chemical synthesis , Streptogramin Group A/pharmacology , Acetylation/drug effects , Acetyltransferases/genetics , Acetyltransferases/metabolism , Animals , Anti-Bacterial Agents/classification , Bacterial Load/drug effects , Binding Sites , Cryoelectron Microscopy , Female , In Vitro Techniques , Mice , Microbial Sensitivity Tests , Models, Molecular , RNA, Transfer/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Streptogramin Group A/chemistry , Streptogramin Group A/classification , Virginiamycin/analogs & derivatives , Virginiamycin/chemistry , Virginiamycin/metabolism
5.
Nat Chem Biol ; 19(9): 1054-1062, 2023 09.
Article in English | MEDLINE | ID: mdl-37169961

ABSTRACT

Preventing the biogenesis of disease-relevant proteins is an attractive therapeutic strategy, but attempts to target essential protein biogenesis factors have been hampered by excessive toxicity. Here we describe KZR-8445, a cyclic depsipeptide that targets the Sec61 translocon and selectively disrupts secretory and membrane protein biogenesis in a signal peptide-dependent manner. KZR-8445 potently inhibits the secretion of pro-inflammatory cytokines in primary immune cells and is highly efficacious in a mouse model of rheumatoid arthritis. A cryogenic electron microscopy structure reveals that KZR-8445 occupies the fully opened Se61 lateral gate and blocks access to the lumenal plug domain. KZR-8445 binding stabilizes the lateral gate helices in a manner that traps select signal peptides in the Sec61 channel and prevents their movement into the lipid bilayer. Our results establish a framework for the structure-guided discovery of novel therapeutics that selectively modulate Sec61-mediated protein biogenesis.


Subject(s)
Membrane Proteins , Protein Sorting Signals , Animals , Mice , Protein Transport , Membrane Proteins/metabolism , SEC Translocation Channels/chemistry , SEC Translocation Channels/genetics , SEC Translocation Channels/metabolism , Protein Biosynthesis
6.
Nucleic Acids Res ; 50(W1): W384-W391, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35474477

ABSTRACT

Phase separation-based condensate formation is a novel working paradigm in biology, helping to rationalize many important cellular phenomena including the assembly of membraneless organelles. Uncovering the functional impact of cellular condensates requires a better knowledge of these condensates' constituents. Herein, we introduce the webserver GraPES (Granule Protein Enrichment Server), a user-friendly online interface containing the MaGS and MaGSeq predictors, which provide propensity scores for proteins' localization into cellular condensates. Our webpage contains models trained on human (Homo sapiens) and yeast (Saccharomyces cerevisiae) stress granule proteins. MaGS utilizes experimentally-based protein features for prediction, whereas MaGSeq is an entirely protein sequence-based implementation. GraPES is implemented in HTML/CSS and Javascript and is freely available for public use at https://grapes.msl.ubc.ca/. Documentation for using the provided webtools, descriptions of their methodology, and implementation notes can be found on the webpage.


Subject(s)
Computers , Ribonucleoproteins , Stress Granules , Humans , Amino Acid Sequence , Heat-Shock Proteins/metabolism , Organelles/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Stress Granules/chemistry , Stress Granules/metabolism
7.
Biochemistry ; 61(20): 2165-2176, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36161872

ABSTRACT

Cysteine side chains can exist in distinct oxidation states depending on the pH and redox potential of the environment, and cysteine oxidation plays important yet complex regulatory roles. Compared with the effects of post-translational modifications such as phosphorylation, the effects of oxidation of cysteine to sulfenic, sulfinic, and sulfonic acid on protein structure and function remain relatively poorly characterized. We present an analysis of the role of cysteine reactivity as a regulatory factor in proteins, emphasizing the interplay between electrostatics and redox potential as key determinants of the resulting oxidation state. A review of current computational approaches suggests underdeveloped areas of research for studying cysteine reactivity through molecular simulations.


Subject(s)
Cysteine , Proteins , Biophysics , Cysteine/chemistry , Oxidation-Reduction , Proteins/chemistry , Sulfenic Acids , Sulfonic Acids
8.
Nucleic Acids Res ; 48(W1): W154-W161, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32352516

ABSTRACT

The separation of deleterious from benign mutations remains a key challenge in the interpretation of genomic data. Computational methods used to sort mutations based on their potential deleteriousness rely largely on conservation measures derived from sequence alignments. Here, we introduce LIST-S2, a successor to our previously developed approach LIST, which aims to exploit local sequence identity and taxonomy distances in quantifying the conservation of human protein sequences. Unlike its predecessor, LIST-S2 is not limited to human sequences but can assess conservation and make predictions for sequences from any organism. Moreover, we provide a web-tool and downloadable software to compute and visualize the deleteriousness of mutations in user-provided sequences. This web-tool contains an HTML interface and a RESTful API to submit and manage sequences as well as a browsable set of precomputed predictions for a large number of UniProtKB protein sequences of common taxa. LIST-S2 is available at: https://list-s2.msl.ubc.ca/.


Subject(s)
Mutation, Missense , Software , Animals , Germ-Line Mutation , Humans , Neoplasms/genetics , Sequence Analysis, Protein
9.
PLoS Genet ; 15(8): e1008295, 2019 08.
Article in English | MEDLINE | ID: mdl-31398187

ABSTRACT

The progressive failure of protein homeostasis is a hallmark of aging and a common feature in neurodegenerative disease. As the enzymes executing the final stages of autophagy, lysosomal proteases are key contributors to the maintenance of protein homeostasis with age. We previously reported that expression of granulin peptides, the cleavage products of the neurodegenerative disease protein progranulin, enhance the accumulation and toxicity of TAR DNA binding protein 43 (TDP-43) in Caenorhabditis elegans (C. elegans). In this study we show that C. elegans granulins are produced in an age- and stress-dependent manner. Granulins localize to the endolysosomal compartment where they impair lysosomal protease expression and activity. Consequently, protein homeostasis is disrupted, promoting the nuclear translocation of the lysosomal transcription factor HLH-30/TFEB, and prompting cells to activate a compensatory transcriptional program. The three C. elegans granulin peptides exhibited distinct but overlapping functional effects in our assays, which may be due to amino acid composition that results in distinct electrostatic and hydrophobicity profiles. Our results support a model in which granulin production modulates a critical transition between the normal, physiological regulation of protease activity and the impairment of lysosomal function that can occur with age and disease.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/genetics , Granulins/metabolism , Lysosomes/metabolism , Neurodegenerative Diseases/genetics , Aging/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Disease Models, Animal , Endopeptidases/metabolism , Gene Expression Regulation , Granulins/genetics , Humans , Neurodegenerative Diseases/pathology , Stress, Physiological/genetics
10.
Biochemistry ; 60(22): 1741-1754, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34029049

ABSTRACT

In this paper, human platelet 12-lipoxygenase [h12-LOX (ALOX12)], human reticulocyte 15-lipoxygenase-1 [h15-LOX-1 (ALOX15)], and human epithelial 15-lipoxygenase-2 [h15-LOX-2 (ALOX15B)] were observed to react with docosahexaenoic acid (DHA) and produce 17S-hydroperoxy-4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic acid (17S-HpDHA). The kcat/KM values with DHA for h12-LOX, h15-LOX-1, and h15-LOX-2 were 12, 0.35, and 0.43 s-1 µM-1, respectively, which demonstrate h12-LOX as the most efficient of the three. These values are comparable to their counterpart kcat/KM values with arachidonic acid (AA), 14, 0.98, and 0.24 s-1 µM-1, respectively. Comparison of their product profiles with DHA demonstrates that the three LOX isozymes produce 11S-HpDHA, 14S-HpDHA, and 17S-HpDHA, to varying degrees, with 17S-HpDHA being the majority product only for the 15-LOX isozymes. The effective kcat/KM values (kcat/KM × percent product formation) for 17S-HpDHA of the three isozymes indicate that the in vitro value of h12-LOX was 2.8-fold greater than that of h15-LOX-1 and 1.3-fold greater than that of h15-LOX-2. 17S-HpDHA was an effective substrate for h12-LOX and h15-LOX-1, with four products being observed under reducing conditions: protectin DX (PDX), 16S,17S-epoxy-4Z,7Z,10Z,12E,14E,19Z-docosahexaenoic acid (16S,17S-epoxyDHA), the key intermediate in neuroprotection D1 biosynthesis [NPD1, also known as protectin D1 (PD1)], 11,17S-diHDHA, and 16,17S-diHDHA. However, h15-LOX-2 did not react with 17-HpDHA. With respect to their effective kcat/KM values, h12-LOX was markedly less effective than h15-LOX-1 in reacting with 17S-HpDHA, with a 55-fold lower effective kcat/KM in producing 16S,17S-epoxyDHA and a 27-fold lower effective kcat/KM in generating PDX. This is the first direct demonstration of h15-LOX-1 catalyzing this reaction and reveals an in vitro pathway for PDX and NPD1 intermediate biosynthesis. In addition, epoxide formation from 17S-HpDHA and h15-LOX-1 was negatively affected via allosteric regulation by 17S-HpDHA (Kd = 5.9 µM), 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12S-HETE) (Kd = 2.5 µM), and 17S-hydroxy-13Z,15E,19Z-docosatrienoic acid (17S-HDTA) (Kd = 1.4 µM), suggesting a possible regulatory pathway in reducing epoxide formation. Finally, 17S-HpDHA and PDX inhibited platelet aggregation, with EC50 values of approximately 1 and 3 µM, respectively. The in vitro results presented here may help advise in vivo PDX and NPD1 intermediate (i.e., 16S,17S-epoxyDHA) biosynthetic investigations and support the benefits of DHA rich diets.


Subject(s)
Docosahexaenoic Acids/metabolism , Lipoxygenases/metabolism , Allosteric Regulation , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Arachidonic Acid/metabolism , Arachidonic Acids/metabolism , Biosynthetic Pathways , Blood Platelets/metabolism , Docosahexaenoic Acids/pharmacokinetics , Docosahexaenoic Acids/pharmacology , Humans , Lipoxygenase/metabolism , Lipoxygenases/biosynthesis
11.
Biochemistry ; 60(10): 802-812, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33635645

ABSTRACT

It was previously shown that human platelet 12S-lipoxygenase (h12-LOX) exists as a dimer; however, the specific structure is unknown. In this study, we create a model of the dimer through a combination of computational methods, experimental mutagenesis, and hydrogen-deuterium exchange (HDX) investigations. Initially, Leu183 and Leu187 were replaced by negatively charged glutamate residues and neighboring aromatic residues were replaced with alanine residues (F174A/W176A/L183E/L187E/Y191A). This quintuple mutant disrupted both the hydrophobic and π-π interactions, generating an h12-LOX monomer. To refine the determinants for dimer formation further, the L183E/L187E mutant was generated and the equilibrium shifted mostly toward the monomer. We then submitted the predicted monomeric structure to protein-protein docking to create a model of the dimeric complex. A total of nine of the top 10 most energetically favorable docking conformations predict a TOP-to-TOP dimeric arrangement of h12-LOX, with the α-helices containing a Leu-rich region (L172, L183, L187, and L194), corroborating our experimental results showing the importance of these hydrophobic interactions for dimerization. This model was supported by HDX investigations that demonstrated the stabilization of four, non-overlapping peptides within helix α2 of the TOP subdomain for wt-h12-LOX, consistent with the dimer interface. Most importantly, our data reveal that the dimer and monomer of h12-LOX have distinct biochemical properties, suggesting that the structural changes due to dimerization have allosteric effects on active site catalysis and inhibitor binding.


Subject(s)
Arachidonate 12-Lipoxygenase/chemistry , Arachidonate 12-Lipoxygenase/metabolism , Deuterium Exchange Measurement/methods , Molecular Docking Simulation/methods , Mutagenesis , Mutation , Protein Multimerization , Arachidonate 12-Lipoxygenase/genetics , Catalytic Domain , Humans , Models, Molecular , Protein Conformation
12.
Mol Pharm ; 18(1): 451-460, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33315406

ABSTRACT

Glycosaminoglycans (GAGs) such as heparan sulfate and chondroitin sulfate decorate all mammalian cell surfaces. These mucopolysaccharides act as coreceptors for extracellular ligands, regulating cell signaling, growth, proliferation, and adhesion. In glioblastoma, the most common type of primary malignant brain tumor, dysregulated GAG biosynthesis results in altered chain length, sulfation patterns, and the ratio of contributing monosaccharides. These events contribute to the loss of normal cellular function, initiating and sustaining malignant growth. Disruption of the aberrant cell surface GAGs with small molecule inhibitors of GAG biosynthetic enzymes is a potential therapeutic approach to blocking the rogue signaling and proliferation in glioma, including glioblastoma. Previously, 4-azido-xylose-α-UDP sugar inhibited both xylosyltransferase (XYLT-1) and ß-1,4-galactosyltransferase-7 (ß-GALT-7)-the first and second enzymes of GAG biosynthesis-when microinjected into a cell. In another study, 4-deoxy-4-fluoro-ß-xylosides inhibited ß-GALT-7 at 1 mM concentration in vitro. In this work, we seek to solve the enduring problem of drug delivery to human glioma cells at low concentrations. We developed a library of hydrophobic, presumed prodrugs 4-deoxy-4-fluoro-2,3-dibenzoyl-(α- or ß-) xylosides and their corresponding hydrophilic inhibitors of XYLT-1 and ß-GALT-7 enzymes. The prodrugs were designed to be activatable by carboxylesterase enzymes overexpressed in glioblastoma. Using a colorimetric MTT assay in human glioblastoma cell lines, we identified a prodrug-drug pair (4-nitrophenyl-α-xylosides) as lead drug candidates. The candidates arrest U251 cell growth at an IC50 = 380 nM (prodrug), 122 µM (drug), and U87 cells at IC50 = 10.57 µM (prodrug). Molecular docking studies were consistent with preferred binding of the α- versus ß-nitro xyloside conformer to XYLT-1 and ß-GALT-7 enzymes.


Subject(s)
Glioblastoma/metabolism , Glycosides/metabolism , Animals , Cell Line, Tumor , Chondroitin Sulfates/metabolism , Galactosyltransferases/metabolism , Glycosaminoglycans/metabolism , Heparitin Sulfate/metabolism , Humans , Molecular Docking Simulation/methods , Pentosyltransferases/metabolism , Prodrugs/metabolism , UDP Xylose-Protein Xylosyltransferase
13.
Bioorg Med Chem ; 46: 116347, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34507163

ABSTRACT

Human platelet 12-(S)-Lipoxygenase (12-LOX) is a fatty acid metabolizing oxygenase that plays an important role in platelet activation and cardiometabolic disease. ML355 is a specific 12-LOX inhibitor that has been shown to decrease thrombosis without prolonging hemostasis and protect human pancreatic islets from inflammatory injury. It has an amenable drug-like scaffold with nM potency and encouraging ADME and PK profiles, but its binding mode to the active site of 12-LOX remains unclear. In the current work, we combined computational modeling and experimental mutagenesis to propose a model in which ML355 conforms to the "U" shape of the 12-LOX active site, with the phenyl linker region wrapping around L407. The benzothiazole of ML355 extends into the bottom of the active site cavity, pointing towards residues A417 and V418. However, reducing the active site depth alone did not affect ML355 potency. In order to lower the potency of ML355, the cavity needed to be reduced in both length and width. In addition, H596 appears to position ML355 in the active site through an interaction with the 2-methoxy phenol moiety of ML355. Combined, this binding model suggested that the benzothiazole of ML355 could be enlarged. Therefore, a naphthyl-benzothiazole derivative of ML355, Lox12Slug001, was synthesized and shown to have 7.2-fold greater potency than ML355. This greater potency is proposed to be due to additional van der Waals interactions and pi-pi stacking with F414 and F352. Lox12Slug001 was also shown to be highly selective against 12-LOX relative to the other LOX isozymes and more importantly, it showed activity in rescuing human islets exposed to inflammatory cytokines with comparable potency to ML355. Further studies are currently being pursued to derivatize ML355 in order to optimize the additional space in the active site, while maintaining acceptable drug-like properties.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Drug Development , Lipoxygenase Inhibitors/pharmacology , Molecular Docking Simulation , Sulfonamides/pharmacology , Dose-Response Relationship, Drug , Humans , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
14.
Bioorg Med Chem ; 46: 116349, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34500187

ABSTRACT

Human epithelial 15-lipoxygenase-2 (h15-LOX-2, ALOX15B) is expressed in many tissues and has been implicated in atherosclerosis, cystic fibrosis and ferroptosis. However, there are few reported potent/selective inhibitors that are active ex vivo. In the current work, we report newly discovered molecules that are more potent and structurally distinct from our previous inhibitors, MLS000545091 and MLS000536924 (Jameson et al, PLoS One, 2014, 9, e104094), in that they contain a central imidazole ring, which is substituted at the 1-position with a phenyl moiety and with a benzylthio moiety at the 2-position. The initial three molecules were mixed-type, non-reductive inhibitors, with IC50 values of 0.34 ±â€¯0.05 µM for MLS000327069, 0.53 ±â€¯0.04 µM for MLS000327186 and 0.87 ±â€¯0.06 µM for MLS000327206 and greater than 50-fold selectivity versus h5-LOX, h12-LOX, h15-LOX-1, COX-1 and COX-2. A small set of focused analogs was synthesized to demonstrate the validity of the hits. In addition, a binding model was developed for the three imidazole inhibitors based on computational docking and a co-structure of h15-LOX-2 with MLS000536924. Hydrogen/deuterium exchange (HDX) results indicate a similar binding mode between MLS000536924 and MLS000327069, however, the latter restricts protein motion of helix-α2 more, consistent with its greater potency. Given these results, we designed, docked, and synthesized novel inhibitors of the imidazole scaffold and confirmed our binding mode hypothesis. Importantly, four of the five inhibitors mentioned above are active in an h15-LOX-2/HEK293 cell assay and thus they could be important tool compounds in gaining a better understanding of h15-LOX-2's role in human biology. As such, a suite of similar pharmacophores that target h15-LOX-2 both in vitro and ex vivo are presented in the hope of developing them as therapeutic agents.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Lipoxygenase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Humans , Kinetics , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Molecular Structure , Structure-Activity Relationship
15.
Biochemistry ; 59(19): 1832-1844, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32324389

ABSTRACT

Human reticulocyte 15-lipoxygenase-1 (h15-LOX-1 or ALOX15) and platelet 12-lipoxygenase (h12-LOX or ALOX12) catalysis of docosahexaenoic acid (DHA) and the maresin precursor, 14S-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoic acid (14S-HpDHA), were investigated to determine their product profiles and relative rates in the biosynthesis of the key maresin intermediate, 13S,14S-epoxy-4Z,7Z,9E,11E,16Z,19Z-docosahexaenoic acid (13S,14S-epoxy-DHA). Both enzymes converted DHA to 14S-HpDHA, with h12-LOX having a 39-fold greater kcat/KM value (14.0 ± 0.8 s-1 µM-1) than that of h15-LOX-1 (0.36 ± 0.08 s-1 µM-1) and a 1.8-fold greater 14S-HpDHA product selectivity, 81 and 46%, respectively. However, h12-LOX was markedly less effective at producing 13S,14S-epoxy-DHA from 14S-HpDHA than h15-LOX-1, with a 4.6-fold smaller kcat/KM value, 0.0024 ± 0.0002 and 0.11 ± 0.006 s-1 µM-1, respectively. This is the first evidence of h15-LOX-1 to catalyze this reaction and reveals a novel in vitro pathway for maresin biosynthesis. In addition, epoxidation of 14S-HpDHA is negatively regulated through allosteric oxylipin binding to h15-LOX-1 and h12-LOX. For h15-LOX-1, 14S-HpDHA (Kd = 6.0 µM), 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12S-HETE) (Kd = 3.5 µM), and 14S-hydroxy-7Z,10Z,12E,16Z,19Z-docosapentaenoic acid (14S-HDPAω-3) (Kd = 4.0 µM) were shown to decrease 13S,14S-epoxy-DHA production. h12-LOX was also shown to be allosterically regulated by 14S-HpDHA (Kd = 3.5 µM) and 14S-HDPAω-3 (Kd = 4.0 µM); however, 12S-HETE showed no effect, indicating for the first time an allosteric response by h12-LOX. Finally, 14S-HpDHA inhibited platelet aggregation at a submicrololar concentration, which may have implications in the benefits of diets rich in DHA. These in vitro biosynthetic pathways may help guide in vivo maresin biosynthetic investigations and possibly direct therapeutic interventions.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Docosahexaenoic Acids/biosynthesis , Docosahexaenoic Acids/metabolism , Allosteric Regulation , Arachidonate 12-Lipoxygenase/isolation & purification , Arachidonate 15-Lipoxygenase/isolation & purification , Docosahexaenoic Acids/analogs & derivatives , Docosahexaenoic Acids/chemistry , Humans , Molecular Structure , Platelet Aggregation , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
16.
Biochemistry ; 59(42): 4118-4130, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33048542

ABSTRACT

The oxylipins, 5S,12S-dihydroxy-6E,8Z,10E,14Z-eicosatetraenoic acid (5S,12S-diHETE) and 5S,15S-dihydroxy-6E,8Z,11Z,13E-eicosatetraenoic acid (5S,15S-diHETE), have been identified in cell exudates and have chemotactic activity toward eosinophils and neutrophils. Their biosynthesis has been proposed to occur by sequential oxidations of arachidonic acid (AA) by lipoxygenase enzymes, specifically through oxidation of AA by h5-LOX followed by h12-LOX, h15-LOX-1, or h15-LOX-2. In this work, h15-LOX-1 demonstrates altered positional specificity when reacting with 5S-HETE, producing 90% 5S,12S-diHETE, instead of 5S,15S-diHETE, with kinetics 5-fold greater than that of h12-LOX. This is consistent with previous work in which h15-LOX-1 reacts with 7S-HDHA, producing the noncanonical, DHA-derived, specialized pro-resolving mediator, 7S,14S-diHDHA. It is also determined that oxygenation of 5S-HETE by h15-LOX-2 produces 5S,15S-diHETE and its biosynthetic kcat/KM flux is 2-fold greater than that of h15-LOX-1, suggesting that h15-LOX-2 may have a greater role in lipoxin biosynthesis than previously thought. In addition, it is shown that oxygenation of 12S-HETE and 15S-HETE by h5-LOX is kinetically slow, suggesting that the first step in the in vitro biosynthesis of both 5S,12S-diHETE and 5S,15S-diHETE is the production of 5S-HETE.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Lipoxins/metabolism , Arachidonic Acid/metabolism , Arachidonic Acids/metabolism , Humans , Hydroxyeicosatetraenoic Acids/metabolism
17.
J Lipid Res ; 61(7): 1087-1103, 2020 07.
Article in English | MEDLINE | ID: mdl-32404334

ABSTRACT

The two oxylipins 7S,14S-dihydroxydocosahexaenoic acid (diHDHA) and 7S,17S-diHDHA [resolvin D5 (RvD5)] have been found in macrophages and infectious inflammatory exudates and are believed to function as specialized pro-resolving mediators (SPMs). Their biosynthesis is thought to proceed through sequential oxidations of DHA by lipoxygenase (LOX) enzymes, specifically, by human 5-LOX (h5-LOX) first to 7(S)-hydroxy-4Z,8E,10Z,13Z,16Z,19Z-DHA (7S-HDHA), followed by human platelet 12-LOX (h12-LOX) to form 7(S),14(S)-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-DHA (7S,14S-diHDHA) or human reticulocyte 15-LOX-1 (h15-LOX-1) to form RvD5. In this work, we determined that oxidation of 7(S)-hydroperoxy-4Z,8E,10Z,13Z,16Z,19Z-DHA to 7S,14S-diHDHA is performed with similar kinetics by either h12-LOX or h15-LOX-1. The oxidation at C14 of DHA by h12-LOX was expected, but the noncanonical reaction of h15-LOX-1 to make over 80% 7S,14S-diHDHA was larger than expected. Results of computer modeling suggested that the alcohol on C7 of 7S-HDHA hydrogen bonds with the backbone carbonyl of Ile399, forcing the hydrogen abstraction from C12 to oxygenate on C14 but not C17. This result raised questions regarding the synthesis of RvD5. Strikingly, we found that h15-LOX-2 oxygenates 7S-HDHA almost exclusively at C17, forming RvD5 with faster kinetics than does h15-LOX-1. The presence of h15-LOX-2 in neutrophils and macrophages suggests that it may have a greater role in biosynthesizing SPMs than previously thought. We also determined that the reactions of h5-LOX with 14(S)-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-DHA and 17(S)-hydroperoxy-4Z,7Z,10Z,13Z,15E,19Z-DHA are kinetically slow compared with DHA, suggesting that these reactions may be minor biosynthetic routes in vivo. Additionally, we show that 7S,14S-diHDHA and RvD5 have anti-aggregation properties with platelets at low micromolar potencies, which could directly regulate clot resolution.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Docosahexaenoic Acids/biosynthesis , Blood Platelets/metabolism , Docosahexaenoic Acids/chemistry , Humans
18.
J Biol Chem ; 294(22): 8779-8790, 2019 05 31.
Article in English | MEDLINE | ID: mdl-30992364

ABSTRACT

Tau, a member of the MAP2/tau family of microtubule-associated proteins, stabilizes and organizes axonal microtubules in healthy neurons. In neurodegenerative tauopathies, tau dissociates from microtubules and forms neurotoxic extracellular aggregates. MAP2/tau family proteins are characterized by three to five conserved, intrinsically disordered repeat regions that mediate electrostatic interactions with the microtubule surface. Here, we used molecular dynamics, microtubule-binding experiments, and live-cell microscopy, revealing that highly-conserved histidine residues near the C terminus of each microtubule-binding repeat are pH sensors that can modulate tau-microtubule interaction strength within the physiological intracellular pH range. We observed that at low pH (<7.5), these histidines are positively charged and interact with phenylalanine residues in a hydrophobic cleft between adjacent tubulin dimers. At higher pH (>7.5), tau deprotonation decreased binding to microtubules both in vitro and in cells. Electrostatic and hydrophobic characteristics of histidine were both required for tau-microtubule binding, as substitutions with constitutively and positively charged nonaromatic lysine or uncharged alanine greatly reduced or abolished tau-microtubule binding. Consistent with these findings, tau-microtubule binding was reduced in a cancer cell model with increased intracellular pH but was rapidly restored by decreasing the pH to normal levels. These results add detailed insights into the intracellular regulation of tau activity that may be relevant in both normal and pathological conditions.


Subject(s)
Histidine/metabolism , Microtubules/metabolism , tau Proteins/metabolism , Amino Acid Sequence , Binding Sites , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Tertiary , Sequence Alignment , Static Electricity , tau Proteins/genetics
19.
Biophys J ; 116(8): 1432-1445, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30961890

ABSTRACT

Human immunodeficiency virus-1 viral infectivity factor (Vif) is an intrinsically disordered protein responsible for the ubiquitination of the APOBEC3 (A3) antiviral proteins. Vif folds when it binds Cullin-RING E3 ligase 5 and the transcription cofactor CBF-ß. A five-protein complex containing the substrate receptor (Vif, CBF-ß, Elongin-B, Elongin-C (VCBC)) and Cullin5 (CUL5) has a published crystal structure, but dynamics of this VCBC-CUL5 complex have not been characterized. Here, we use molecular dynamics (MD) simulations and NMR to characterize the dynamics of the VCBC complex with and without CUL5 and an A3 protein bound. Our simulations show that the VCBC complex undergoes global dynamics involving twisting and clamshell opening of the complex, whereas VCBC-CUL5 maintains a more static conformation, similar to the crystal structure. This observation from MD is supported by methyl-transverse relaxation-optimized spectroscopy NMR data, which indicates that the VCBC complex without CUL5 is dynamic on the µs-ms timescale. Our NMR data also show that the VCBC complex is more conformationally restricted when bound to the antiviral APOBEC3F (one of the A3 proteins), consistent with our MD simulations. Vif contains a flexible linker region located at the hinge of the VCBC complex, which changes conformation in conjunction with the global dynamics of the complex. Like other substrate receptors, VCBC can exist alone or in complex with CUL5 and other proteins in cells. Accordingly, the VCBC complex could be a good target for therapeutics that would inhibit full assembly of the ubiquitination complex by stabilizing an alternate VCBC conformation.


Subject(s)
Cullin Proteins/chemistry , Cytidine Deaminase/chemistry , Molecular Dynamics Simulation , vif Gene Products, Human Immunodeficiency Virus/chemistry , APOBEC Deaminases , Core Binding Factor beta Subunit/chemistry , Crystallization , Elongin/chemistry , Humans , Kinetics , Protein Binding , Protein Conformation , Protein Folding , Structure-Activity Relationship , Ubiquitination
20.
Biochemistry ; 58(23): 2670-2674, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31099551

ABSTRACT

Progranulin (PGRN) is an evolutionarily conserved glycoprotein associated with several disease states, including neurodegeneration, cancer, and autoimmune disorders. This protein has recently been implicated in the regulation of lysosome function, whereby PGRN may bind to and promote the maturation and activity of the aspartyl protease cathepsin D (proCTSD, inactive precursor; matCTSD, mature, enzymatically active form). As the full-length PGRN protein can be cleaved into smaller peptides, called granulins, we assessed the function of these granulin peptides in binding to proCTSD and stimulating matCTSD enzyme activity in vitro. Here, we report that full-length PGRN and multi-granulin domain peptides bound to proCTSD with low to submicromolar binding affinities. This binding promoted proCTSD destabilization, the magnitude of which was greater for multi-granulin domain peptides than for full-length PGRN. Such destabilization correlated with enhanced matCTSD activity at acidic pH. The presence and function of multi-granulin domain peptides have typically been overlooked in previous studies. This work provides the first in vitro quantification of their binding and activity on proCTSD. Our study highlights the significance of multi-granulin domain peptides in the regulation of proCTSD maturation and enzymatic activity and suggests that attention to PGRN processing will be essential for the future understanding of the molecular mechanisms leading to neurodegenerative disease states with loss-of-function mutations in PGRN.


Subject(s)
Cathepsin D/metabolism , Enzyme Precursors/metabolism , Granulins/metabolism , Humans , Protein Binding , Protein Conformation , Protein Stability , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL