Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Nat Immunol ; 23(3): 371-379, 2022 03.
Article in English | MEDLINE | ID: mdl-35228695

ABSTRACT

The innate lymphoid cell (ILC) family is composed of natural killer (NK) cells, ILC1, ILC2 and ILC3, which participate in immune responses to virus, bacteria, parasites and transformed cells. ILC1, ILC2 and ILC3 subsets are mostly tissue-resident, and are profoundly imprinted by their organ of residence. They exhibit pleiotropic effects, driving seemingly paradoxical responses such as tissue repair and, alternatively, immunopathology toward allergens and promotion of tumorigenesis. Despite this, a trickle of studies now suggests that non-NK ILCs may not be overwhelmingly tumorigenic and could potentially be harnessed to drive anti-tumor responses. Here, we examine the pleiotropic behavior of ILCs in cancer and begin to unravel the gap in our knowledge that exposes a new horizon for thinking about modifying ILCs and targeting them for immunotherapy.


Subject(s)
Immunity, Innate , Neoplasms , Humans , Immunotherapy , Killer Cells, Natural , Lymphocytes
2.
Nat Immunol ; 22(7): 851-864, 2021 07.
Article in English | MEDLINE | ID: mdl-34099918

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are essential to maintain tissue homeostasis. In cancer, ILC2s can harbor both pro-tumorigenic and anti-tumorigenic functions, but we know little about their underlying mechanisms or whether they could be clinically relevant or targeted to improve patient outcomes. Here, we found that high ILC2 infiltration in human melanoma was associated with a good clinical prognosis. ILC2s are critical producers of the cytokine granulocyte-macrophage colony-stimulating factor, which coordinates the recruitment and activation of eosinophils to enhance antitumor responses. Tumor-infiltrating ILC2s expressed programmed cell death protein-1, which limited their intratumoral accumulation, proliferation and antitumor effector functions. This inhibition could be overcome in vivo by combining interleukin-33-driven ILC2 activation with programmed cell death protein-1 blockade to significantly increase antitumor responses. Together, our results identified ILC2s as a critical immune cell type involved in melanoma immunity and revealed a potential synergistic approach to harness ILC2 function for antitumor immunotherapies.


Subject(s)
Antibodies/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Interleukin-33/pharmacology , Lymphocytes/drug effects , Melanoma, Experimental/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Skin Neoplasms/drug therapy , Animals , Cell Line, Tumor , Chemotaxis, Leukocyte/drug effects , Cytotoxicity, Immunologic/drug effects , Eosinophils/drug effects , Eosinophils/immunology , Eosinophils/metabolism , Female , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Lymphocytes/immunology , Lymphocytes/metabolism , Male , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/metabolism
4.
Nat Immunol ; 21(2): 168-177, 2020 02.
Article in English | MEDLINE | ID: mdl-31873294

ABSTRACT

Group 3 innate lymphoid cell (ILC3)-mediated production of the cytokine interleukin-22 (IL-22) is critical for the maintenance of immune homeostasis in the gastrointestinal tract. Here, we find that the function of ILC3s is not constant across the day, but instead oscillates between active phases and resting phases. Coordinate responsiveness of ILC3s in the intestine depended on the food-induced expression of the neuropeptide vasoactive intestinal peptide (VIP). Intestinal ILC3s had high expression of the G protein-coupled receptor vasoactive intestinal peptide receptor 2 (VIPR2), and activation by VIP markedly enhanced the production of IL-22 and the barrier function of the epithelium. Conversely, deficiency in signaling through VIPR2 led to impaired production of IL-22 by ILC3s and increased susceptibility to inflammation-induced gut injury. Thus, intrinsic cellular rhythms acted in synergy with the cyclic patterns of food intake to drive the production of IL-22 and synchronize protection of the intestinal epithelium through a VIP-VIPR2 pathway in ILC3s.


Subject(s)
Immunity, Mucosal/immunology , Lymphocyte Subsets/immunology , Lymphocytes/immunology , Periodicity , Vasoactive Intestinal Peptide/immunology , Animals , Eating/immunology , Immunity, Innate/immunology , Lymphocyte Subsets/metabolism , Lymphocytes/metabolism , Mice , Mice, Inbred C57BL , Vasoactive Intestinal Peptide/metabolism
5.
Immunity ; 45(4): 931-943, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27717798

ABSTRACT

The efficacy of the anti-cancer immunomodulatory agent cyclophosphamide (CTX) relies on intestinal bacteria. How and which relevant bacterial species are involved in tumor immunosurveillance, and their mechanism of action are unclear. Here, we identified two bacterial species, Enterococcus hirae and Barnesiella intestinihominis that are involved during CTX therapy. Whereas E. hirae translocated from the small intestine to secondary lymphoid organs and increased the intratumoral CD8/Treg ratio, B. intestinihominis accumulated in the colon and promoted the infiltration of IFN-γ-producing γδT cells in cancer lesions. The immune sensor, NOD2, limited CTX-induced cancer immunosurveillance and the bioactivity of these microbes. Finally, E. hirae and B. intestinihominis specific-memory Th1 cell immune responses selectively predicted longer progression-free survival in advanced lung and ovarian cancer patients treated with chemo-immunotherapy. Altogether, E. hirae and B. intestinihominis represent valuable "oncomicrobiotics" ameliorating the efficacy of the most common alkylating immunomodulatory compound.


Subject(s)
Cyclophosphamide/pharmacology , Enterococcus hirae/immunology , Immunologic Factors/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Animals , Colon/immunology , Colon/microbiology , Immunologic Memory/immunology , Immunotherapy/methods , Interferon-gamma/immunology , Intestine, Small/immunology , Intestine, Small/microbiology , Mice , Mice, Inbred C57BL , Monitoring, Immunologic , Nod2 Signaling Adaptor Protein/immunology , Th1 Cells/immunology
6.
Blood ; 136(26): 3004-3017, 2020 12 24.
Article in English | MEDLINE | ID: mdl-32818230

ABSTRACT

Natural killer (NK) cells play critical roles in protection against hematological malignancies but can acquire a dysfunctional state, which limits antitumor immunity. However, the underlying reasons for this impaired NK cell function remain to be uncovered. We found that NK cells in aggressive B-cell lymphoma underwent substantial transcriptional reprogramming associated with increased lipid metabolism, including elevated expression of the transcriptional regulator peroxisome activator receptor-γ (PPAR-γ). Exposure to fatty acids in the lymphoma environment potently suppressed NK cell effector response and cellular metabolism. NK cells from both diffuse large B-cell lymphoma patients and Eµ-myc B-cell lymphoma-bearing mice displayed reduced interferon-γ (IFN-γ) production. Activation of PPAR-γ partially restored mitochondrial membrane potential and IFN-γ production. Overall, our data indicate that increased lipid metabolism, while impairing their function, is a functional adaptation of NK cells to the fatty-acid rich lymphoma environment.


Subject(s)
Killer Cells, Natural/immunology , Lipid Metabolism/immunology , Lymphoma, Large B-Cell, Diffuse/immunology , Tumor Microenvironment/immunology , Animals , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Killer Cells, Natural/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Membrane Potential, Mitochondrial/genetics , Membrane Potential, Mitochondrial/immunology , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , PPAR gamma/genetics , PPAR gamma/immunology , Tumor Microenvironment/genetics
7.
Immunol Rev ; 286(1): 6-22, 2018 11.
Article in English | MEDLINE | ID: mdl-30294966

ABSTRACT

The study of the immune system has shifted from a purely dichotomous separation between the innate and adaptive arms to one that is now highly complex and reshaping our ideas of how steady-state health is assured. It is now clear that immune cells do not neatly fit into these two streams and immune homeostasis depends on continual dialogue between multiple lineages of the innate (including dendritic cells, innate lymphoid cells, and unconventional lymphocytes) and adaptive (T and B lymphocytes) arms together with a finely tuned synergy between the host and microbes which is essential to ensure immune homeostasis. Innate lymphoid cells are critical players in this new landscape. Here, we discuss recent studies that have elucidated in detail the development of ILCs from their earliest progenitors and examine factors that influence their identification and ability to drive immune homeostasis and long-term immune protection.


Subject(s)
Dendritic Cells/immunology , Immunity, Innate , Lymphocytes/immunology , Animals , Homeostasis , Host-Pathogen Interactions , Humans
8.
Int J Mol Sci ; 22(16)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34445750

ABSTRACT

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect "stressed cells' such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.


Subject(s)
Carcinoma, Hepatocellular/immunology , Killer Cells, Natural/physiology , Liver Neoplasms/immunology , Animals , Carcinoma, Hepatocellular/therapy , Humans , Immunotherapy , Liver/immunology , Liver Neoplasms/therapy , Lymphocyte Subsets/physiology
9.
Methods Cell Biol ; 188: 153-169, 2024.
Article in English | MEDLINE | ID: mdl-38880522

ABSTRACT

Pancreatic cancer remains an unmet medical need. Late diagnosis and the lack of efficient treatment significantly impact the prognosis of patients suffering from pancreatic cancer. Improving patient outcomes requires a deeper comprehension of the tumor ecosystem. To achieve this, a thorough exploration of the tumor microenvironment using pre-clinical models that accurately replicate human disease is imperative, particularly in understanding the dynamics of immune cell subsets. Surprisingly, the impact of model variations on the composition of the tumor microenvironment has been largely neglected. In this study, we introduce an orthotopic model of pancreatic ductal adenocarcinoma and a spontaneous model of insulinoma. Our findings reveal striking differences in the innate lymphoid cell infiltrate, highlighting the importance of considering model-specific influences when investigating the tumor microenvironment.


Subject(s)
Carcinoma, Pancreatic Ductal , Disease Models, Animal , Immunity, Innate , Lymphocytes , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Mice , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Tumor Microenvironment/immunology , Lymphocytes/immunology , Humans , Insulinoma/pathology , Insulinoma/immunology , Cell Line, Tumor , Mice, Inbred C57BL
10.
Mucosal Immunol ; 17(3): 371-386, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492744

ABSTRACT

Interleukin-(IL) 22 production by intestinal group 3 innate lymphoid cells (ILC3) is critical to maintain gut homeostasis. However, IL-22 needs to be tightly controlled; reduced IL-22 expression is associated with intestinal epithelial barrier defect while its overexpression promotes tumor development. Here, using a single-cell ribonucleic acid sequencing approach, we identified a core set of genes associated with increased IL-22 production by ILC3. Among these genes, programmed cell death 1 (PD-1), extensively studied in the context of cancer and chronic infection, was constitutively expressed on a subset of ILC3. These cells, found in the crypt of the small intestine and colon, displayed superior capacity to produce IL-22. PD-1 expression on ILC3 was dependent on the microbiota and was induced during inflammation in response to IL-23 but, conversely, was reduced in the presence of Notch ligand. PD-1+ ILC3 exhibited distinct metabolic activity with increased glycolytic, lipid, and polyamine synthesis associated with augmented proliferation compared with their PD-1- counterparts. Further, PD-1+ ILC3 showed increased expression of mitochondrial antioxidant proteins which enable the cells to maintain their levels of reactive oxygen species. Loss of PD-1 signaling in ILC3 led to reduced IL-22 production in a cell-intrinsic manner. During inflammation, PD-1 expression was increased on natural cytotoxicity receptor (NCR)- ILC3 while deficiency in PD-1 expression resulted in increased susceptibility to experimental colitis and failure to maintain gut barrier integrity. Collectively, our findings uncover a new function of the PD-1 and highlight the role of PD-1 signaling in the maintenance of gut homeostasis mediated by ILC3 in mice.


Subject(s)
Homeostasis , Immunity, Innate , Interleukin-22 , Interleukins , Lymphocytes , Mice, Knockout , Programmed Cell Death 1 Receptor , Animals , Mice , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Lymphocytes/immunology , Lymphocytes/metabolism , Interleukins/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Signal Transduction , Colitis/immunology , Intestines/immunology , Mice, Inbred C57BL , Humans , Disease Models, Animal
11.
Oncoimmunology ; 13(1): 2349347, 2024.
Article in English | MEDLINE | ID: mdl-38746870

ABSTRACT

The innate lymphoid cell (ILC) family is composed of heterogeneous innate effector and helper immune cells that preferentially reside in tissues where they promote tissue homeostasis. In cancer, they have been implicated in driving both pro- and anti-tumor responses. This apparent dichotomy highlights the need to better understand differences in the ILC composition and phenotype within different tumor types that could drive seemingly opposite anti-tumor responses. Here, we characterized the frequency and phenotype of various ILC subsets in melanoma metastases and primary epithelial ovarian tumors. We observed high PD-1 expression on ILC subsets isolated from epithelial ovarian tumor samples, while ILC populations in melanoma samples express higher levels of LAG-3. In addition, we found that the frequency of cytotoxic ILCs and NKp46+ILC3 in tumors positively correlates with monocytic cells and conventional type 2 dendritic cells, revealing potentially new interconnected immune cell subsets in the tumor microenvironment. Consequently, these observations may have direct relevance to tumor microenvironment composition and how ILC subset may influence anti-tumor immunity.


Subject(s)
Carcinoma, Ovarian Epithelial , Immunity, Innate , Lymphocytes, Tumor-Infiltrating , Melanoma , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Melanoma/immunology , Melanoma/pathology , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Tumor Microenvironment/immunology , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Neoplasms, Glandular and Epithelial/immunology , Neoplasms, Glandular and Epithelial/pathology , Programmed Cell Death 1 Receptor/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Dendritic Cells/immunology , Dendritic Cells/pathology , Dendritic Cells/metabolism , Lymphocyte Activation Gene 3 Protein , Antigens, CD/metabolism
12.
Sci Immunol ; 9(95): eadj2654, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820141

ABSTRACT

Tissue-resident innate lymphoid cells (ILCs) play a vital role in the frontline defense of various tissues, including the lung. The development of type 2 ILCs (ILC2s) depends on transcription factors such as GATA3, RORα, GFI1, and Bcl11b; however, the factors regulating lung-resident ILC2s remain unclear. Through fate mapping analysis of the paralog transcription factors GFI1 and GFI1B, we show that GFI1 is consistently expressed during the transition from progenitor to mature ILC2s. In contrast, GFI1B expression is limited to specific subsets of bone marrow progenitors and lung-resident ILC progenitors. We found that GFI1B+ lung ILC progenitors represent a multi-lineage subset with tissue-resident characteristics and the potential to form lung-derived ILC subsets and liver-resident ILC1s. Loss of GFI1B in bone marrow progenitors led to the selective loss of lung-resident IL-18R+ ILCs and mature ILC2, subsequently preventing the emergence of effector ILCs that could protect the lung against inflammatory or tumor challenge.


Subject(s)
Immunity, Innate , Lung , Mice, Inbred C57BL , Proto-Oncogene Proteins , Animals , Lung/immunology , Lung/cytology , Mice , Immunity, Innate/immunology , Proto-Oncogene Proteins/immunology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/metabolism , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/cytology , Repressor Proteins/genetics , Repressor Proteins/immunology , Mice, Knockout , Lymphocytes/immunology , Cell Differentiation/immunology , DNA-Binding Proteins , Transcription Factors
13.
Pharmaceutics ; 15(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37514187

ABSTRACT

Reinvigorating the killing function of tumor-infiltrating immune cells through the targeting of regulatory molecules expressed on lymphocytes has markedly improved the prognosis of cancer patients, particularly in melanoma. While initially thought to solely strengthen adaptive T lymphocyte anti-tumor activity, recent investigations suggest that other immune cell subsets, particularly tissue-resident innate lymphoid cells (ILCs), may benefit from immunotherapy treatment. Here, we describe the recent findings showing immune checkpoint expression on tissue-resident and tumor-infiltrating ILCs and how their effector function is modulated by checkpoint blockade-based therapies in cancer. We discuss the therapeutic potential of ILCs beyond the classical PD-1 and CTLA-4 regulatory molecules, exploring other possibilities to manipulate ILC effector function to further impede tumor growth and quench disease progression.

14.
Cell Death Dis ; 14(2): 111, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774342

ABSTRACT

Cell death mechanisms in T lymphocytes vary according to their developmental stage, cell subset and activation status. The cell death control mechanisms of mucosal-associated invariant T (MAIT) cells, a specialized T cell population, are largely unknown. Here we report that MAIT cells express key necroptotic machinery; receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) protein, in abundance. Despite this, we discovered that the loss of RIPK3, but not necroptotic effector MLKL or apoptotic caspase-8, specifically increased MAIT cell abundance at steady-state in the thymus, spleen, liver and lungs, in a cell-intrinsic manner. In contrast, over the course of infection with Francisella tularensis, RIPK3 deficiency did not impact the magnitude of the expansion nor contraction of MAIT cell pools. These findings suggest that, distinct from conventional T cells, the accumulation of MAIT cells is restrained by RIPK3 signalling, likely prior to thymic egress, in a manner independent of canonical apoptotic and necroptotic cell death pathways.


Subject(s)
Mucosal-Associated Invariant T Cells , Humans , Necrosis/metabolism , Mucosal-Associated Invariant T Cells/metabolism , Cell Death , Liver/metabolism , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
15.
STAR Protoc ; 3(3): 101534, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35830307

ABSTRACT

Innate lymphoid cells (ILCs) and adaptive T cells remain a challenge to study because of a significant overlap in their transcriptomic profiles. Here, we describe the adoptive transfer of ILC progenitors into mice genetically deficient in innate and adaptive immune cells to allow detailed study of the development and function of ILCs and gene regulation in an in vivo setting. For complete details on the use and execution of this protocol, please refer to Jacquelot et al. (2021) and Seillet et al. (2016).


Subject(s)
Immunity, Innate , Lymphocytes , Animals , Bone Marrow , Lymphoid Progenitor Cells , Mice , T-Lymphocytes
16.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36301303

ABSTRACT

Innate and adaptive immune cells are found in distinct tissue niches where they orchestrate immune responses. This requires intrinsic and temporal metabolic adaptability to coordinately activate the immune response cascade. Dysregulation of this program is a key feature of immunosuppression. Direct or indirect metabolic immune cell reprogramming may offer new approaches to modulate immune cells behavior for therapy to overcome dysregulation. In this review, we explored how metabolism regulates lymphocytes beyond the classical T cell subsets. We focus on the innate lymphoid cell (ILC) family, highlighting the distinct metabolic characteristics of these cells, the impact of environmental factors, and the receptors that could alter immune cell functions through manipulation of metabolic pathways to potentially prevent or treat various diseases.


Subject(s)
Immunity, Innate , Lymphocytes , T-Lymphocyte Subsets
17.
Cancers (Basel) ; 14(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35565201

ABSTRACT

Immune regulation is composed of a complex network of cellular and molecular pathways that regulate the immune system and prevent tissue damage. It is increasingly clear that innate lymphoid cells (ILCs) are also armed with immunosuppressive capacities similar to well-known immune regulatory cells (i.e., regulatory T cells). In cancer, immunoregulatory ILCs have been shown to inhibit anti-tumour immune response through various mechanisms including: (a) direct suppression of anti-tumour T cells or NK cells, (b) inhibiting T-cell priming, and (c) promoting other immunoregulatory cells. To provide a framework of understanding the role of immunosuppressive ILCs in the context of cancer, we first outline a brief history and challenges related to defining immunosuppressive ILCs. Furthermore, we focus on the mechanisms of ILCs in suppressing anti-tumour immunity and consequentially promoting tumour progression.

18.
Front Immunol ; 13: 948358, 2022.
Article in English | MEDLINE | ID: mdl-36032129

ABSTRACT

Innate and adaptive immune cells monitor, recognize, and eliminate transformed cells. Innate lymphoid cells (ILCs) are innate counterparts of T cells that play a key role in many facets of the immune response and have a profound impact on disease states, including cancer. ILCs regulate immune responses by responding and integrating a wide range of signals within the local microenvironment. As primarily tissue-resident cells, ILCs are ideally suited to sense malignant transformation and initiate anti-tumor immunity. However, as ILCs have been associated with anti-tumor and pro-tumor activities in established tumors, they could potentially have dual functions during carcinogenesis by promoting or suppressing the malignant outgrowth of premalignant lesions. Here we discuss emerging evidence that shows that ILCs can impact early tumor development by regulating immune responses against transformed cells, as well as the environmental cues that potentially induce ILC activation in premalignant lesions.


Subject(s)
Immunity, Innate , Neoplasms , Carcinogenesis , Humans , Lymphocytes , Tumor Microenvironment
19.
Oncoimmunology ; 10(1): 1943168, 2021.
Article in English | MEDLINE | ID: mdl-34239775

ABSTRACT

Immunity to melanoma is thought to be mainly mediated by adaptive immune cells. To what extent innate immunity, particularly innate lymphoid cells, drive the immune response and impact melanoma prognosis and therapeutic responsiveness is not well understood. In a recent article published in Nature Immunology, we uncovered a critical role that ILC2 play in the control of melanoma. Using both complementary mouse models and human samples, we showed that ILC2-derived granulocyte macrophage-colony stimulating factor (GM-CSF) drives eosinophil tumor recruitment and activation. We found that ILC2 express PD-1 which inhibits ILC2 effector function and impairs anti-tumor responses. We further demonstrated that the combination of IL-33 and anti-PD-1 blocking antibodies improved anti-tumor responses through the expansion of splenic and tumor-infiltrating ILC2 and eosinophils. These findings have revealed an essential mechanism involving ILC2 and eosinophils necessary for anti-melanoma immunity and immunotherapy responses.


Subject(s)
Immunity, Innate , Melanoma , Eosinophils , Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Lymphocytes , Melanoma/drug therapy
20.
Front Neurosci ; 15: 657081, 2021.
Article in English | MEDLINE | ID: mdl-33994930

ABSTRACT

The Earth's rotation around its axis, is one of the parameters that never changed since life emerged. Therefore, most of the organisms from the cyanobacteria to humans have conserved natural oscillations to regulate their physiology. These daily oscillations define the circadian rhythms that set the biological clock for almost all physiological processes of an organism. They allow the organisms to anticipate and respond behaviorally and physiologically to changes imposed by the day/night cycle. As other physiological systems, the immune system is also regulated by circadian rhythms and while diurnal variation in host immune responses to lethal infection have been observed for many decades, the underlying mechanisms that affect immune function and health have only just started to emerge. These oscillations are generated by the central clock in our brain, but neuroendocrine signals allow the synchronization of the clocks in peripheral tissues. In this review, we discuss how the neuroimmune interactions create a rhythmic activity of the innate lymphoid cells. We highlight how the disruption of these rhythmic regulations of immune cells can disturb homeostasis and lead to the development of chronic inflammation in murine models.

SELECTION OF CITATIONS
SEARCH DETAIL