Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Clin Genet ; 106(1): 90-94, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38424388

ABSTRACT

Central nervous system (CNS) dural arteriovenous fistulas (DAVF) have been reported in PTEN-related hamartoma tumor syndrome (PHTS). However, PHTS-associated DAVF remain an underexplored field of the PHTS clinical landscape. Here, we studied cases with a PTEN pathogenic variant identified between 2007 and 2020 in our laboratory (n = 58), and for whom brain imaging was available. Two patients had DAVF (2/58, 3.4%), both presenting at advanced stages: a 34-year-old man with a left lateral sinus DAVF at immediate risk of hemorrhage, and a 21-year-old woman with acute intracranial hypertension due to a torcular DAVF. Interestingly, not all patients had 3D TOF/MRA, the optimal sequences to detect DAVF. Early diagnosis of DAVF can be lifesaving, and is easier to treat compared to developed, proliferative, or complex lesions. As a result, one should consider brain MRI with 3D TOF/MRA in PHTS patients at genetic diagnosis, with subsequent surveillance on a case-by-case basis.


Subject(s)
Central Nervous System Vascular Malformations , Hamartoma Syndrome, Multiple , PTEN Phosphohydrolase , Humans , Adult , PTEN Phosphohydrolase/genetics , Female , Male , Central Nervous System Vascular Malformations/genetics , Central Nervous System Vascular Malformations/complications , Central Nervous System Vascular Malformations/diagnostic imaging , Central Nervous System Vascular Malformations/diagnosis , Hamartoma Syndrome, Multiple/genetics , Hamartoma Syndrome, Multiple/complications , Young Adult , Magnetic Resonance Imaging , Mutation
2.
Genet Med ; 25(8): 100856, 2023 08.
Article in English | MEDLINE | ID: mdl-37092537

ABSTRACT

PURPOSE: Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS: We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS: We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION: Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.


Subject(s)
Microphthalmos , Receptors, Retinoic Acid , Humans , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Retinoids
3.
Clin Genet ; 104(5): 554-563, 2023 11.
Article in English | MEDLINE | ID: mdl-37580112

ABSTRACT

The PIK3CA-related overgrowth spectrum (PROS) encompasses various conditions caused by mosaic activating PIK3CA variants. PIK3CA somatic variants are also involved in various cancer types. Some generalized overgrowth syndromes are associated with an increased risk of Wilms tumor (WT). In PROS, abdominal ultrasound surveillance has been advocated to detect WT. We aimed to determine the risk of embryonic and other types of tumors in patients with PROS in order to evaluate surveillance relevance. We searched the clinical charts from 267 PROS patients for the diagnosis of cancer, and reviewed the medical literature for the risk of cancer. In our cohort, six patients developed a cancer (2.2%), and Kaplan Meier analyses estimated cumulative probabilities of cancer occurrence at 45 years of age was 5.6% (95% CI = 1.35%-21.8%). The presence of the PIK3CA variant was only confirmed in two out of four tumor samples. In the literature and our cohort, six cases of Wilms tumor/nephrogenic rests (0.12%) and four cases of other cancers have been reported out of 483 proven PIK3CA patients, in particular the p.(His1047Leu/Arg) variant. The risk of WT in PROS being lower than 5%, this is insufficient evidence to recommend routine abdominal imaging. Long-term follow-up studies are needed to evaluate the risk of other cancer types, as well as the relationship with the extent of tissue mosaicism and the presence or not of the variant in the tumor samples.


Subject(s)
Kidney Neoplasms , Wilms Tumor , Humans , Mutation , Early Detection of Cancer , Growth Disorders/diagnosis , Wilms Tumor/diagnosis , Wilms Tumor/epidemiology , Wilms Tumor/genetics , Class I Phosphatidylinositol 3-Kinases/genetics
4.
J Med Genet ; 59(6): 559-567, 2022 06.
Article in English | MEDLINE | ID: mdl-33820833

ABSTRACT

BACKGROUND: Arthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families. METHODS: Several genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants. RESULTS: We achieved disease gene identification in 52.7% of AMC index patients including nine recently identified genes (CNTNAP1, MAGEL2, ADGRG6, ADCY6, GLDN, LGI4, LMOD3, UNC50 and SCN1A). Moreover, we identified pathogenic variants in ASXL3 and STAC3 expanding the phenotypes associated with these genes. The most frequent cause of AMC was a primary involvement of skeletal muscle (40%) followed by brain (22%). The most frequent mode of inheritance is autosomal recessive (66.3% of patients). In sporadic patients born to non-consanguineous parents (n=60), de novo dominant autosomal or X linked variants were observed in 30 of them (50%). CONCLUSION: New genes recently identified in AMC represent 21% of causing genes in our cohort. A high proportion of de novo variants were observed indicating that this mechanism plays a prominent part in this developmental disease. Our data showed the added value of WES when compared with TES due to the larger clinical spectrum of some disease genes than initially described and the identification of novel genes.


Subject(s)
Arthrogryposis , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Arthrogryposis/pathology , Genomics , Humans , Pedigree , Phenotype , Proteins/genetics , Transcription Factors/genetics , Exome Sequencing
5.
Genet Med ; 24(2): 492-498, 2022 02.
Article in English | MEDLINE | ID: mdl-34906476

ABSTRACT

PURPOSE: Biallelic loss-of-function variants in ST3GAL5 cause GM3 synthase deficiency (GM3SD) responsible for Amish infantile epilepsy syndrome. All Amish patients carry the homozygous p.(Arg288Ter) variant arising from a founder effect. To date only 10 patients from 4 non-Amish families have been reported. Thus, the phenotypical spectrum of GM3SD due to other variants and other genetic backgrounds is still poorly known. METHODS: We collected clinical and molecular data from 16 non-Amish patients with pathogenic ST3GAL5 variants resulting in GM3SD. RESULTS: We identified 12 families originating from Reunion Island, Ivory Coast, Italy, and Algeria and carrying 6 ST3GAL5 variants, 5 of which were novel. Genealogical investigations and/or haplotype analyses showed that 3 of these variants were founder alleles. Glycosphingolipids quantification in patients' plasma confirmed the pathogenicity of 4 novel variants. All patients (N = 16), aged 2 to 12 years, had severe to profound intellectual disability, 14 of 16 had a hyperkinetic movement disorder, 11 of 16 had epilepsy and 9 of 16 had microcephaly. Other main features were progressive skin pigmentation anomalies, optic atrophy or pale papillae, and hearing loss. CONCLUSION: The phenotype of non-Amish patients with GM3SD is similar to the Amish infantile epilepsy syndrome, which suggests that GM3SD is associated with a narrow and severe clinical spectrum.


Subject(s)
Epilepsy , Epilepsy/complications , Epilepsy/genetics , Homozygote , Humans , Sialyltransferases/deficiency , Sialyltransferases/genetics
6.
Brain ; 144(8): 2427-2442, 2021 09 04.
Article in English | MEDLINE | ID: mdl-33792664

ABSTRACT

Marinesco-Sjögren syndrome is a rare human disorder caused by biallelic mutations in SIL1 characterized by cataracts in infancy, myopathy and ataxia, symptoms which are also associated with a novel disorder caused by mutations in INPP5K. While these phenotypic similarities may suggest commonalties at a molecular level, an overlapping pathomechanism has not been established yet. In this study, we present six new INPP5K patients and expand the current mutational and phenotypical spectrum of the disease showing the clinical overlap between Marinesco-Sjögren syndrome and the INPP5K phenotype. We applied unbiased proteomic profiling on cells derived from Marinesco-Sjögren syndrome and INPP5K patients and identified alterations in d-3-PHGDH as a common molecular feature. d-3-PHGDH modulates the production of l-serine and mutations in this enzyme were previously associated with a neurological phenotype, which clinically overlaps with Marinesco-Sjögren syndrome and INPP5K disease. As l-serine administration represents a promising therapeutic strategy for d-3-PHGDH patients, we tested the effect of l-serine in generated sil1, phgdh and inpp5k a+b zebrafish models, which showed an improvement in their neuronal phenotype. Thus, our study defines a core phenotypical feature underpinning a key common molecular mechanism in three rare diseases and reveals a common and novel therapeutic target for these patients.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Inositol Polyphosphate 5-Phosphatases/genetics , Mutation , Phenotype , Phosphoglycerate Dehydrogenase/genetics , Spinocerebellar Degenerations/genetics , Adolescent , Adult , Animals , Child , Female , Humans , Male , Middle Aged , Muscle, Skeletal/pathology , Proteomics , Spinocerebellar Degenerations/pathology , Zebrafish
7.
Genet Med ; 23(8): 1484-1491, 2021 08.
Article in English | MEDLINE | ID: mdl-33833411

ABSTRACT

PURPOSE: Hypomelanosis of Ito (HI) is a skin marker of somatic mosaicism. Mosaic MTOR pathogenic variants have been reported in HI with brain overgrowth. We sought to delineate further the pigmentary skin phenotype and clinical spectrum of neurodevelopmental manifestations of MTOR-related HI. METHODS: From two cohorts totaling 71 patients with pigmentary mosaicism, we identified 14 patients with Blaschko-linear and one with flag-like pigmentation abnormalities, psychomotor impairment or seizures, and a postzygotic MTOR variant in skin. Patient records, including brain magnetic resonance image (MRI) were reviewed. Immunostaining (n = 3) for melanocyte markers and ultrastructural studies (n = 2) were performed on skin biopsies. RESULTS: MTOR variants were present in skin, but absent from blood in half of cases. In a patient (p.[Glu2419Lys] variant), phosphorylation of p70S6K was constitutively increased. In hypopigmented skin of two patients, we found a decrease in stage 4 melanosomes in melanocytes and keratinocytes. Most patients (80%) had macrocephaly or (hemi)megalencephaly on MRI. CONCLUSION: MTOR-related HI is a recognizable neurocutaneous phenotype of patterned dyspigmentation, epilepsy, intellectual deficiency, and brain overgrowth, and a distinct subtype of hypomelanosis related to somatic mosaicism. Hypopigmentation may be due to a defect in melanogenesis, through mTORC1 activation, similar to hypochromic patches in tuberous sclerosis complex.


Subject(s)
Hypopigmentation , Megalencephaly , Humans , Hypopigmentation/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mosaicism , Phenotype , TOR Serine-Threonine Kinases/genetics
8.
Am J Hum Genet ; 100(2): 352-363, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28132691

ABSTRACT

Degradation of proteins by the ubiquitin-proteasome system (UPS) is an essential biological process in the development of eukaryotic organisms. Dysregulation of this mechanism leads to numerous human neurodegenerative or neurodevelopmental disorders. Through a multi-center collaboration, we identified six de novo genomic deletions and four de novo point mutations involving PSMD12, encoding the non-ATPase subunit PSMD12 (aka RPN5) of the 19S regulator of 26S proteasome complex, in unrelated individuals with intellectual disability, congenital malformations, ophthalmologic anomalies, feeding difficulties, deafness, and subtle dysmorphic facial features. We observed reduced PSMD12 levels and an accumulation of ubiquitinated proteins without any impairment of proteasome catalytic activity. Our PSMD12 loss-of-function zebrafish CRISPR/Cas9 model exhibited microcephaly, decreased convolution of the renal tubules, and abnormal craniofacial morphology. Our data support the biological importance of PSMD12 as a scaffolding subunit in proteasome function during development and neurogenesis in particular; they enable the definition of a neurodevelopmental disorder due to PSMD12 variants, expanding the phenotypic spectrum of UPS-dependent disorders.


Subject(s)
Neurodevelopmental Disorders/genetics , Proteasome Endopeptidase Complex/genetics , Adolescent , Animals , Child , Child, Preschool , DNA Copy Number Variations , Disease Models, Animal , Down-Regulation , Female , Gene Deletion , Humans , Infant , Intellectual Disability/genetics , Male , Microcephaly/genetics , Polymorphism, Single Nucleotide , Zebrafish/genetics
9.
Genet Med ; 22(1): 181-188, 2020 01.
Article in English | MEDLINE | ID: mdl-31363182

ABSTRACT

PURPOSE: Kabuki syndrome (KS) (OMIM 147920 and 300867) is a rare genetic disorder characterized by specific facial features, intellectual disability, and various malformations. Immunopathological manifestations seem prevalent and increase the morbimortality. To assess the frequency and severity of the manifestations, we measured the prevalence of immunopathological manifestations as well as genotype-phenotype correlations in KS individuals from a registry. METHODS: Data were for 177 KS individuals with KDM6A or KMT2D pathogenic variants. Questionnaires to clinicians were used to assess the presence of immunodeficiency and autoimmune diseases both on a clinical and biological basis. RESULTS: Overall, 44.1% (78/177) and 58.2% (46/79) of KS individuals exhibited infection susceptibility and hypogammaglobulinemia, respectively; 13.6% (24/177) had autoimmune disease (AID; 25.6% [11/43] in adults), 5.6% (10/177) with ≥2 AID manifestations. The most frequent AID manifestations were immune thrombocytopenic purpura (7.3% [13/177]) and autoimmune hemolytic anemia (4.0% [7/177]). Among nonhematological manifestations, vitiligo was frequent. Immune thrombocytopenic purpura was frequent with missense versus other types of variants (p = 0.027). CONCLUSION: The high prevalence of immunopathological manifestations in KS demonstrates the importance of systematic screening and efficient preventive management of these treatable and sometimes life-threatening conditions.


Subject(s)
Autoimmune Diseases/epidemiology , DNA-Binding Proteins/genetics , Face/abnormalities , Hematologic Diseases/complications , Histone Demethylases/genetics , Neoplasm Proteins/genetics , Primary Immunodeficiency Diseases/epidemiology , Vestibular Diseases/complications , Abnormalities, Multiple/genetics , Abnormalities, Multiple/immunology , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Genetic Association Studies , Hematologic Diseases/genetics , Hematologic Diseases/immunology , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation , Prevalence , Registries , Severity of Illness Index , Vestibular Diseases/genetics , Vestibular Diseases/immunology , Young Adult
10.
Clin Genet ; 98(2): 166-171, 2020 08.
Article in English | MEDLINE | ID: mdl-32361989

ABSTRACT

Bardet-Biedl syndrome (BBS) is a rare ciliopathy with variable retinal dystrophy, polydactyly, renal abnormalities, obesity, cognitive impairment, and hypogonadism. Biallelic pathogenic variants have been identified in 24 genes, leading to BBS in an autosomal recessive inheritance pattern. In this study, we investigated a cohort of 16 families (20 individuals) presenting with typical BBS originating from La Réunion Island using sequencing (Sanger and high-throughput methods) and SNP array. In eight families (12 individuals) we identified the same ARL6/BBS3 variation [c.535G > A, p.(Asp179Asn)]. Bioinformatics and functional analyses revealed an effect of this variant on the splicing of ARL6/BBS3. Owing to the relatively high frequency of this variant, a possible founder effect was suspected. Genotyping of six individuals revealed a common 3.8-Mb haplotype and estimated the most recent common ancestor to about eight generations confirmed by the known genealogy. Knowledge of this founder effect modifies our diagnostic strategy and enables a personalized genetic counseling for patients from La Réunion Island. Being the first description of BBS patients from La Réunion Island, we could estimate its prevalence between ~1/45000 and ~ 1/66000 individuals.


Subject(s)
ADP-Ribosylation Factors/genetics , Bardet-Biedl Syndrome/genetics , Genetic Predisposition to Disease , Polydactyly/genetics , Adolescent , Alleles , Bardet-Biedl Syndrome/physiopathology , Child , Child, Preschool , Female , Founder Effect , Genotype , Haplotypes , Humans , Male , Mutation , Pedigree , Polydactyly/physiopathology , Polymorphism, Single Nucleotide/genetics
11.
Am J Med Genet A ; 182(3): 446-453, 2020 03.
Article in English | MEDLINE | ID: mdl-31876365

ABSTRACT

Kabuki syndrome (KS, KS1: OMIM 147920 and KS2: OMIM 300867) is caused by pathogenic variations in KMT2D or KDM6A. KS is characterized by multiple congenital anomalies and neurodevelopmental disorders. Growth restriction is frequently reported. Here we aimed to create specific growth charts for individuals with KS1, identify parameters used for size prognosis and investigate the impact of growth hormone therapy on adult height. Growth parameters and parental size were obtained for 95 KS1 individuals (41 females). Growth charts for height, weight, body mass index (BMI) and occipitofrontal circumference were generated in standard deviation values for the first time in KS1. Statural growth of KS1 individuals was compared to parental target size. According to the charts, height, weight, BMI, and occipitofrontal circumference were lower for KS1 individuals than the normative French population. For males and females, the mean growth of KS1 individuals was -2 and -1.8 SD of their parental target size, respectively. Growth hormone therapy did not increase size beyond the predicted size. This study, from the largest cohort available, proposes growth charts for widespread use in the management of KS1, especially for size prognosis and screening of other diseases responsible for growth impairment beyond a calculated specific target size.


Subject(s)
Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Face/abnormalities , Hematologic Diseases/genetics , Hematologic Diseases/physiopathology , Neoplasm Proteins/genetics , Vestibular Diseases/genetics , Vestibular Diseases/physiopathology , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/physiopathology , Adolescent , Body Height , Body Mass Index , Body Weight , Child , Child, Preschool , Face/physiopathology , Female , Growth Charts , Hematologic Diseases/diagnosis , Histone Demethylases/genetics , Humans , Male , Mutation/genetics , Vestibular Diseases/diagnosis
12.
Genet Med ; 21(9): 2081-2091, 2019 09.
Article in English | MEDLINE | ID: mdl-30837697

ABSTRACT

PURPOSE: The Ehlers-Danlos syndromes (EDS) are a group of rare inherited connective tissue disorders. Vascular EDS (vEDS) is caused by pathogenic variants in COL3A1, most frequently glycine substitutions. We describe the phenotype of the largest series of vEDS patients with glutamic acid to lysine substitutions (Glu>Lys) in COL3A1, which were all previously considered to be variants of unknown significance. METHODS: Clinical and molecular data for seven families with three different Glu>Lys substitutions in COL3A1 were analyzed. RESULTS: These Glu>Lys variants were reclassified from variants of unknown significance to either pathogenic or likely pathogenic in accordance with American College of Medical Genetics and Genomics guidelines. All individuals with these atypical variants exhibited skin hyperextensibility as seen in individuals with classical EDS and classical-like EDS and evidence of tissue fragility as seen in individuals with vEDS. CONCLUSION: The clinical data demonstrate the overlap between the different EDS subtypes and underline the importance of next-generation sequencing gene panel analysis. The three different Glu>Lys variants point toward a new variant type in COL3A1 causative of vEDS, which has consistent clinical features. This is important knowledge for COL3A1 variant interpretation. Further follow-up data are required to establish the severity of tissue fragility complications compared with patients with other recognized molecular causes of vEDS.


Subject(s)
Collagen Type III/genetics , Ehlers-Danlos Syndrome/genetics , Skin Abnormalities/genetics , Adult , Aged , Ehlers-Danlos Syndrome/classification , Ehlers-Danlos Syndrome/pathology , Female , Glutamic Acid/genetics , Glycine/genetics , High-Throughput Nucleotide Sequencing , Humans , Lysine/genetics , Male , Middle Aged , Mutation , Pedigree , Phenotype , Skin Abnormalities/pathology
13.
Genet Med ; 21(2): 398-408, 2019 02.
Article in English | MEDLINE | ID: mdl-30093711

ABSTRACT

PURPOSE: To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway METHODS: We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants. RESULTS: The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia (20%). Infantile spasms were reported in 10% of the probands. Sudden unexpected death in epilepsy (SUDEP) occurred in 10% of the families. Novel classification framework of all 140 epilepsy-related GATOR1 variants (including the variants of this study) revealed that 68% are loss-of-function pathogenic, 14% are likely pathogenic, 15% are variants of uncertain significance and 3% are likely benign. CONCLUSION: Our data emphasize the increasingly important role of GATOR1 genes in the pathogenesis of focal epilepsies (>180 probands to date). The GATOR1 phenotypic spectrum ranges from sporadic early-onset epilepsies with cognitive impairment comorbidities to familial focal epilepsies, and SUDEP.


Subject(s)
Epilepsy/genetics , GTPase-Activating Proteins/genetics , Repressor Proteins/genetics , Tumor Suppressor Proteins/genetics , Adolescent , Brugada Syndrome/genetics , Brugada Syndrome/mortality , Brugada Syndrome/physiopathology , Child , Child, Preschool , DNA Copy Number Variations/genetics , Epilepsy/complications , Epilepsy/epidemiology , Epilepsy/physiopathology , Female , Genetic Predisposition to Disease , Humans , INDEL Mutation/genetics , Infant , Infant, Newborn , Loss of Function Mutation/genetics , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Multiprotein Complexes/genetics , Pedigree , Seizures/complications , Seizures/epidemiology , Seizures/genetics , Seizures/physiopathology , Signal Transduction/genetics
17.
Genet Med ; 21(4): 837-849, 2019 04.
Article in English | MEDLINE | ID: mdl-30206421

ABSTRACT

PURPOSE: Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences. METHODS: We collected the data of 37 unpublished patients (18 males and 19 females) with IQSEC2 pathogenic variants and 5 individuals with variants of unknown significance and reviewed published variants. We compared variant types and phenotypes in males and females and performed an analysis of IQSEC2 isoforms. RESULTS: IQSEC2 pathogenic variants mainly led to premature truncation and were scattered throughout the longest brain-specific isoform, encoding the synaptic IQSEC2/BRAG1 protein. Variants occurred de novo in females but were either de novo (2/3) or inherited (1/3) in males, with missense variants being predominantly inherited. Developmental delay and intellectual disability were overall more severe in males than in females. Likewise, seizures were more frequently observed and intractable, and started earlier in males than in females. No correlation was observed between the age at seizure onset and severity of intellectual disability or resistance to antiepileptic treatments. CONCLUSION: This study provides a comprehensive overview of IQSEC2-related encephalopathy in males and females, and suggests that an accurate dosage of IQSEC2 at the synapse is crucial during normal brain development.


Subject(s)
Brain Diseases/genetics , Guanine Nucleotide Exchange Factors/genetics , Intellectual Disability/genetics , Seizures/genetics , Brain/growth & development , Brain/metabolism , Brain Diseases/epidemiology , Brain Diseases/physiopathology , Female , Humans , Infant , Infant, Newborn , Intellectual Disability/epidemiology , Intellectual Disability/physiopathology , Male , Mutation , Pedigree , Phenotype , Protein Isoforms/genetics , Seizures/epidemiology , Seizures/physiopathology , Sex Characteristics
18.
Clin Genet ; 95(1): 177-181, 2019 01.
Article in English | MEDLINE | ID: mdl-30298622

ABSTRACT

Reunion Island is a French oversea department in the Indian Ocean with 1.6/1000, an estimated prevalence of deafness that is almost double as compared to the mainland France. Twelve children having isolated bilateral prelingual profound deafness along with motor delay attributed to vestibular areflexia were enrolled. Their mean walking age was 19 months. Electroretinography and temporal bone CT-scans were normal in all cases. A novel homozygous frameshift lipoma HMGIC fusion partner-like 5 (LHFPL5) variant c.185delT p.(Phe62Serfs*23) was identified using whole-exome sequencing. It was found in seven families. Four patients from two different families from both Reunion Island and mainland France, were compound heterozygous: c.185delT p.(Phe62Serfs*23) and c.472C > T p.(Arg158Trp). The phenotype observed in our patients completely mimics the hurry-scurry (hscy) murine Tmhs knock-out model. The recurrent occurrence of same LHFPL5 variant in Reunion Island is attributed to common ancestor couple born in 1693.


Subject(s)
Bilateral Vestibulopathy/genetics , Deafness/genetics , Membrane Proteins/genetics , Motor Disorders/genetics , Animals , Bilateral Vestibulopathy/diagnostic imaging , Bilateral Vestibulopathy/physiopathology , Deafness/diagnostic imaging , Deafness/physiopathology , Electroretinography , Female , Frameshift Mutation/genetics , Homozygote , Humans , Infant , Male , Mice , Motor Disorders/diagnostic imaging , Motor Disorders/physiopathology , Pedigree , Tomography, X-Ray Computed , Exome Sequencing
19.
Electrophoresis ; 39(24): 3123-3132, 2018 12.
Article in English | MEDLINE | ID: mdl-29869806

ABSTRACT

Congenital disorders of glycosylation (CDG) are rare autosomal genetic diseases affecting the glycosylation of proteins and lipids. Since CDG-related clinical symptoms are classically extremely variable and nonspecific, a combination of electrophoretic, mass spectrometric, and gene sequencing techniques is often mandatory for obtaining a definitive CDG diagnosis, as well as identifying causative gene mutations and deciphering the underlying biochemical mechanisms. Here, we illustrate the potential of integrating data from capillary electrophoresis of transferrin, two-dimensional electrophoresis of N- and O-glycoproteins, mass spectrometry analyses of total serum N-linked glycans and mucin core1 O-glycosylated apolipoprotein C-III for the determination of various culprit CDG gene mutations. "Step-by-step" diagnosis pathways of four particular and new CDG cases, including MGAT2-CDG, ATP6V0A2-CDG, SLC35A2-CDG, and SLC35A3-CDG, are described as illustrative examples.


Subject(s)
Congenital Disorders of Glycosylation , Electrophoresis/methods , Mass Spectrometry/methods , Sequence Analysis, DNA/methods , Adolescent , Child , Child, Preschool , Congenital Disorders of Glycosylation/blood , Congenital Disorders of Glycosylation/diagnosis , Female , Glycomics , Glycoproteins/blood , Glycoproteins/chemistry , Humans , Infant , Male , Polysaccharides/analysis , Polysaccharides/chemistry
20.
Genet Med ; 19(9): 989-997, 2017 09.
Article in English | MEDLINE | ID: mdl-28151489

ABSTRACT

PURPOSE: Postzygotic activating mutations of PIK3CA cause a wide range of mosaic disorders collectively referred to as PIK3CA-related overgrowth spectrum (PROS). We describe the diagnostic yield and characteristics of PIK3CA sequencing in PROS. METHODS: We performed ultradeep next-generation sequencing (NGS) of PIK3CA in various tissues from 162 patients referred to our clinical laboratory and assessed diagnostic yield by phenotype and tissue tested. RESULTS: We identified disease-causing mutations in 66.7% (108/162) of patients, with mutant allele levels as low as 1%. The diagnostic rate was higher (74%) in syndromic than in isolated cases (35.5%; P = 9.03 × 10-5). We identified 40 different mutations and found strong oncogenic mutations more frequently in patients without brain overgrowth (50.6%) than in those with brain overgrowth (15.2%; P = 0.00055). Mutant allele levels were higher in skin and overgrown tissues than in blood and buccal samples (P = 3.9 × 10-25), regardless of the phenotype. CONCLUSION: Our data demonstrate the value of ultradeep NGS for molecular diagnosis of PROS, highlight its substantial allelic heterogeneity, and confirm that optimal diagnosis requires fresh skin or surgical samples from affected regions. Our findings may be of value in guiding future recommendations for genetic testing in PROS and other mosaic conditions.Genet Med advance online publication 02 February 2017.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/genetics , Genetic Association Studies , Genetic Testing , Growth Disorders/diagnosis , Growth Disorders/genetics , Mutation , Adolescent , Adult , Alleles , Amino Acid Substitution , Child , Child, Preschool , Class I Phosphatidylinositol 3-Kinases/metabolism , Disease Management , Female , Genetic Predisposition to Disease , Genetic Testing/methods , Genotype , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Mosaicism , Phenotype , Prenatal Diagnosis , Sequence Analysis, DNA , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL