Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 29(12): 4832-4844, 2023 12.
Article in English | MEDLINE | ID: mdl-35914058

ABSTRACT

The MD-Cave is an immersive analytics system that provides enhanced stereoscopic visualizations to support visual diagnoses performed by radiologists. The system harnesses contemporary paradigms in immersive visualization and 3D interaction, which are better suited for investigating 3D volumetric data. We retain practicality through efficient utilization of desk space and comfort for radiologists in terms of frequent long duration use. MD-Cave is general and incorporates: (1) high resolution stereoscopic visualizations through a surround triple-monitor setup, (2) 3D interactions through head and hand tracking, (3) and a general framework that supports 3D visualization of deep-seated anatomical structures without the need for explicit segmentation algorithms. Such a general framework expands the utility of our system to many diagnostic scenarios. We have developed MD-Cave through close collaboration and feedback from two expert radiologists who evaluated the utility of MD-Cave and the 3D interactions in the context of radiological examinations. We also provide evaluation of MD-Cave through case studies performed by an expert radiologist and concrete examples on multiple real-world diagnostic scenarios, such as pancreatic cancer, shoulder-CT, and COVID-19 Chest CT examination.


Subject(s)
Algorithms , Computer Graphics , Humans , Tomography, X-Ray Computed , Feedback , Radiologists
2.
IEEE Trans Vis Comput Graph ; 29(3): 1651-1663, 2023 Mar.
Article in English | MEDLINE | ID: mdl-34780328

ABSTRACT

We present a novel approach for volume exploration that is versatile yet effective in isolating semantic structures in both noisy and clean data. Specifically, we describe a hierarchical active contours approach based on Bhattacharyya gradient flow which is easier to control, robust to noise, and can incorporate various types of statistical information to drive an edge-agnostic exploration process. To facilitate a time-bound user-driven volume exploration process that is applicable to a wide variety of data sources, we present an efficient multi-GPU implementation that (1) is approximately 400 times faster than a single thread CPU implementation, (2) allows hierarchical exploration of 2D and 3D images, (3) supports customization through multidimensional attribute spaces, and (4) is applicable to a variety of data sources and semantic structures. The exploration system follows a 2-step process. It first applies active contours to isolate semantically meaningful subsets of the volume. It then applies transfer functions to the isolated regions locally to produce clear and clutter-free visualizations. We show the effectiveness of our approach in isolating and visualizing structures-of-interest without needing any specialized segmentation methods on a variety of data sources, including 3D optical microscopy, multi-channel optical volumes, abdominal and chest CT, micro-CT, MRI, simulation, and synthetic data. We also gathered feedback from a medical trainee regarding the usefulness of our approach and discussion on potential applications in clinical workflows.

3.
IEEE Trans Vis Comput Graph ; 28(1): 227-237, 2022 01.
Article in English | MEDLINE | ID: mdl-34587075

ABSTRACT

Significant work has been done towards deep learning (DL) models for automatic lung and lesion segmentation and classification of COVID-19 on chest CT data. However, comprehensive visualization systems focused on supporting the dual visual+DL diagnosis of COVID-19 are non-existent. We present COVID-view, a visualization application specially tailored for radiologists to diagnose COVID-19 from chest CT data. The system incorporates a complete pipeline of automatic lungs segmentation, localization/isolation of lung abnormalities, followed by visualization, visual and DL analysis, and measurement/quantification tools. Our system combines the traditional 2D workflow of radiologists with newer 2D and 3D visualization techniques with DL support for a more comprehensive diagnosis. COVID-view incorporates a novel DL model for classifying the patients into positive/negative COVID-19 cases, which acts as a reading aid for the radiologist using COVID-view and provides the attention heatmap as an explainable DL for the model output. We designed and evaluated COVID-view through suggestions, close feedback and conducting case studies of real-world patient data by expert radiologists who have substantial experience diagnosing chest CT scans for COVID-19, pulmonary embolism, and other forms of lung infections. We present requirements and task analysis for the diagnosis of COVID-19 that motivate our design choices and results in a practical system which is capable of handling real-world patient cases.


Subject(s)
COVID-19 , Computer Graphics , Humans , Lung/diagnostic imaging , SARS-CoV-2 , Tomography, X-Ray Computed
4.
IEEE Trans Vis Comput Graph ; 28(3): 1457-1468, 2022 03.
Article in English | MEDLINE | ID: mdl-32870794

ABSTRACT

We present 3D virtual pancreatography (VP), a novel visualization procedure and application for non-invasive diagnosis and classification of pancreatic lesions, the precursors of pancreatic cancer. Currently, non-invasive screening of patients is performed through visual inspection of 2D axis-aligned CT images, though the relevant features are often not clearly visible nor automatically detected. VP is an end-to-end visual diagnosis system that includes: A machine learning based automatic segmentation of the pancreatic gland and the lesions, a semi-automatic approach to extract the primary pancreatic duct, a machine learning based automatic classification of lesions into four prominent types, and specialized 3D and 2D exploratory visualizations of the pancreas, lesions and surrounding anatomy. We combine volume rendering with pancreas- and lesion-centric visualizations and measurements for effective diagnosis. We designed VP through close collaboration and feedback from expert radiologists, and evaluated it on multiple real-world CT datasets with various pancreatic lesions and case studies examined by the expert radiologists.


Subject(s)
Pancreatic Neoplasms , Tomography, X-Ray Computed , Computer Graphics , Humans , Machine Learning , Pancreatic Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods
5.
IEEE Trans Vis Comput Graph ; 25(9): 2725-2737, 2019 09.
Article in English | MEDLINE | ID: mdl-30028709

ABSTRACT

We present a volume exploration framework, FeatureLego, that uses a novel voxel clustering approach for efficient selection of semantic features. We partition the input volume into a set of compact super-voxels that represent the finest selection granularity. We then perform an exhaustive clustering of these super-voxels using a graph-based clustering method. Unlike the prevalent brute-force parameter sampling approaches, we propose an efficient algorithm to perform this exhaustive clustering. By computing an exhaustive set of clusters, we aim to capture as many boundaries as possible and ensure that the user has sufficient options for efficiently selecting semantically relevant features. Furthermore, we merge all the computed clusters into a single tree of meta-clusters that can be used for hierarchical exploration. We implement an intuitive user-interface to interactively explore volumes using our clustering approach. Finally, we show the effectiveness of our framework on multiple real-world datasets of different modalities.


Subject(s)
Algorithms , Computer Graphics , Cluster Analysis , Computer Graphics/statistics & numerical data , Computer Simulation , Databases, Factual/statistics & numerical data , Humans , Image Interpretation, Computer-Assisted/statistics & numerical data , Imaging, Three-Dimensional , Models, Anatomic , Semantics , Spinal Cord/anatomy & histology , Spine/anatomy & histology , Tooth/anatomy & histology , User-Computer Interface
6.
IEEE Trans Vis Comput Graph ; 18(9): 1383-96, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22025747

ABSTRACT

Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.

SELECTION OF CITATIONS
SEARCH DETAIL