Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Br J Haematol ; 168(3): 429-42, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25283956

ABSTRACT

Recombinant human erythropoietin (rHuEPO) is an effective treatment for anaemia but concerns that it causes disease progression in cancer patients by activation of EPO receptors (EPOR) in tumour tissue have been controversial and have restricted its clinical use. Initial clinical studies were flawed because they used polyclonal antibodies, later shown to lack specificity for EPOR. Moreover, multiple isoforms of EPOR caused by differential splicing have been reported in cancer cell lines at the mRNA level but investigations of these variants and their potential impact on tumour progression, have been hampered by lack of suitable antibodies. The EpoCan consortium seeks to promote improved pathological testing of EPOR, leading to safer clinical use of rHuEPO, by producing well characterized EPOR antibodies. Using novel genetic and traditional peptide immunization protocols, we have produced mouse and rat monoclonal antibodies, and show that several of these specifically recognize EPOR by Western blot, immunoprecipitation, immunofluorescence, flow cytometry and immunohistochemistry in cell lines and clinical material. Widespread availability of these antibodies should enable the research community to gain a better understanding of the role of EPOR in cancer, and eventually to distinguish patients who can be treated safely by rHuEPO from those at increased risk from treatment.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Neoplasm Proteins/immunology , Receptors, Erythropoietin/immunology , Amino Acid Sequence , Animals , Chemistry Techniques, Synthetic/methods , Flow Cytometry/methods , Fluorescent Antibody Technique , Gene Silencing , Humans , Immunoprecipitation , Mice , Molecular Sequence Data , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Rats , Receptors, Erythropoietin/genetics , Receptors, Erythropoietin/metabolism , Risk Assessment/methods , Terminology as Topic , Tumor Cells, Cultured/metabolism
2.
Biomolecules ; 14(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38672497

ABSTRACT

BACKGROUND: In military flight operations, during flights, fighter pilots constantly work under hyperoxic breathing conditions with supplemental oxygen in varying hypobaric environments. These conditions are suspected to cause oxidative stress to neuronal organ tissues. For civilian flight operations, the Federal Aviation Administration (FAA) also recommends supplemental oxygen for flying under hypobaric conditions equivalent to higher than 3048 m altitude, and has made it mandatory for conditions equivalent to more than 3657 m altitude. AIM: We hypothesized that hypobaric-hyperoxic civilian commercial and private flight conditions with supplemental oxygen in a flight simulation in a hypobaric chamber at 2500 m and 4500 m equivalent altitude would cause significant oxidative stress in healthy individuals. METHODS: Twelve healthy, COVID-19-vaccinated (third portion of vaccination 15 months before study onset) subjects (six male, six female, mean age 35.7 years) from a larger cohort were selected to perform a 3 h flight simulation in a hypobaric chamber with increasing supplemental oxygen levels (35%, 50%, 60%, and 100% fraction of inspired oxygen, FiO2, via venturi valve-equipped face mask), switching back and forth between simulated altitudes of 2500 m and 4500 m. Arterial blood pressure and oxygen saturation were constantly measured via radial catheter and blood samples for blood gases taken from the catheter at each altitude and oxygen level. Additional blood samples from the arterial catheter at baseline and 60% oxygen at both altitudes were centrifuged inside the chamber and the serum was frozen instantly at -21 °C for later analysis of the oxidative stress markers malondialdehyde low-density lipoprotein (M-LDL) and glutathione-peroxidase 1 (GPX1) via the ELISA test. RESULTS: Eleven subjects finished the study without adverse events. Whereas the partial pressure of oxygen (PO2) levels increased in the mean with increasing oxygen levels from baseline 96.2 mm mercury (mmHg) to 160.9 mmHg at 2500 m altitude and 60% FiO2 and 113.2 mmHg at 4500 m altitude and 60% FiO2, there was no significant increase in both oxidative markers from baseline to 60% FiO2 at these simulated altitudes. Some individuals had a slight increase, whereas some showed no increase at all or even a slight decrease. A moderate correlation (Pearson correlation coefficient 0.55) existed between subject age and glutathione peroxidase levels at 60% FiO2 at 4500 m altitude. CONCLUSION: Supplemental oxygen of 60% FiO2 in a flight simulation, compared to flying in cabin pressure levels equivalent to 2500 m-4500 m altitude, does not lead to a significant increase or decrease in the oxidative stress markers M-LDL and GPX1 in the serum of arterial blood.


Subject(s)
Altitude , Oxidative Stress , Oxygen , Humans , Male , Female , Adult , Oxygen/metabolism , COVID-19 , Hyperoxia/blood , Aircraft , Hyperbaric Oxygenation
3.
Oncotarget ; 8(24): 38251-38263, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28418910

ABSTRACT

Breast cancer is a leading cause of cancer-related deaths. Anemia is common in breast cancer patients and can be treated with blood transfusions or with recombinant erythropoietin (EPO) to stimulate red blood cell production. Clinical studies have indicated decreased survival in some groups of cancer patients treated with EPO. Numerous tumor cells express the EPO receptor (EPOR), posing a risk that EPO treatment would enhance tumor growth, but the mechanisms involved in breast tumor progression are poorly understood.Here, we have examined the functional role of the EPO-EPOR axis in pre-clinical models of breast cancer. EPO induced the activation of PI3K/AKT and MAPK pathways in human breast cancer cell lines. EPOR knockdown abrogated human tumor cell growth, induced apoptosis through Bim, reduced invasiveness, and caused downregulation of MYC expression. EPO-induced MYC expression is mediated through the PI3K/AKT and MAPK pathways, and overexpression of MYC partially rescued loss of cell proliferation caused by EPOR downregulation. In a xenotransplantation model, designed to simulate recombinant EPO therapy in breast cancer patients, knockdown of EPOR markedly reduced tumor growth.Thus, our experiments in vitro and in vivo demonstrate that functional EPOR signaling is essential for the tumor-promoting effects of EPO and underline the importance of the EPO-EPOR axis in breast tumor progression.


Subject(s)
Breast Neoplasms/pathology , Erythropoietin/pharmacology , Receptors, Erythropoietin/metabolism , Animals , Apoptosis/drug effects , Apoptosis/physiology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Disease Progression , Erythropoietin/metabolism , Female , Heterografts , Humans , Mice , Mice, Nude , Signal Transduction/drug effects , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL