Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 41(17): e111650, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35899396

ABSTRACT

Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKß is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKß's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.


Subject(s)
Mitogen-Activated Protein Kinases , Muscle, Skeletal , Animals , MAP Kinase Kinase Kinases , Mice , Mitogen-Activated Protein Kinases/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Phosphorylation , Signal Transduction/physiology , p38 Mitogen-Activated Protein Kinases/genetics
2.
Breast Cancer Res ; 26(1): 11, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38229104

ABSTRACT

BACKGROUND: Human breast cancer most frequently originates within a well-defined anatomical structure referred to as the terminal duct lobular unit (TDLU). This structure is endowed with its very own lobular fibroblasts representing one out of two steady-state fibroblast subtypes-the other being interlobular fibroblasts. While cancer-associated fibroblasts (CAFs) are increasingly appreciated as covering a spectrum of perturbed states, we lack a coherent understanding of their relationship-if any-with the steady-state fibroblast subtypes. To address this, we here established two autologous CAF lines representing inflammatory CAFs (iCAFs) and myofibroblast CAFs (myCAFs) and compared them with already established interlobular- and lobular fibroblasts with respect to their origin and impact on tumor formation. METHODS: Primary breast tumor-derived CAFs were transduced to express human telomerase reverse transcriptase (hTERT) and sorted into CD105low and CD105high populations using fluorescence-activated cell sorting (FACS). The two populations were tested for differentiation similarities to iCAF and myCAF states through transcriptome-wide RNA-Sequencing (RNA-Seq) including comparison to an available iCAF-myCAF cell state atlas. Inference of origin in interlobular and lobular fibroblasts relied on RNA-Seq profiles, immunocytochemistry and growth characteristics. Osteogenic differentiation and bone formation assays in culture and in vivo were employed to gauge for origin in bone marrow-derived mesenchymal stem cells (bMSCs). Functional characteristics were assessed with respect to contractility in culture and interaction with tumor cells in mouse xenografts. The cells' gene expression signatures were tested for association with clinical outcome of breast cancer patients using survival data from The Cancer Genome Atlas database. RESULTS: We demonstrate that iCAFs have properties in common with interlobular fibroblasts while myCAFs and lobular fibroblasts are related. None of the CAFs qualify as bMSCs as revealed by lack of critical performance in bone formation assays. Functionally, myCAFs and lobular fibroblasts are almost equally tumor promoting as opposed to iCAFs and interlobular fibroblasts. A myCAF gene signature is found to associate with poor breast cancer-specific survival. CONCLUSIONS: We propose that iCAFs and myCAFs originate in interlobular and lobular fibroblasts, respectively, and more importantly, that the tumor-promoting properties of lobular fibroblasts render the TDLU an epicenter for breast cancer evolution.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Humans , Mice , Animals , Female , Breast Neoplasms/pathology , Osteogenesis , Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Breast/pathology , Tumor Microenvironment
3.
Genome Res ; 30(1): 127-137, 2020 01.
Article in English | MEDLINE | ID: mdl-31831592

ABSTRACT

Bone marrow-derived mesenchymal stem cells (MSCs) differentiate into osteoblasts upon stimulation by signals present in their niche. Because the global signaling cascades involved in the early phases of MSCs osteoblast (OB) differentiation are not well-defined, we used quantitative mass spectrometry to delineate changes in human MSCs proteome and phosphoproteome during the first 24 h of their OB lineage commitment. The temporal profiles of 6252 proteins and 15,059 phosphorylation sites suggested at least two distinct signaling waves: one peaking within 30 to 60 min after stimulation and a second upsurge after 24 h. In addition to providing a comprehensive view of the proteome and phosphoproteome dynamics during early MSCs differentiation, our analyses identified a key role of serine/threonine protein kinase D1 (PRKD1) in OB commitment. At the onset of OB differentiation, PRKD1 initiates activation of the pro-osteogenic transcription factor RUNX2 by triggering phosphorylation and nuclear exclusion of the histone deacetylase HDAC7.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Phosphoproteins/metabolism , Proteome , Proteomics , Humans , Phylogeny , Proteomics/methods
4.
BMC Gastroenterol ; 23(1): 332, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759154

ABSTRACT

BACKGROUND: Ulcerative Colitis (UC) is a disorder which oxidative stress plays a critical role in its pathogenesis. Empagliflozin (EMPA) is a sodium-glucose cotransporter-2 (SGLT2) inhibitor that has been shown to have anti-inflammatory and antioxidative effects. The aim of this study was to investigate the protective effects of EMPA on acetic acid (AA) induced colitis in rats. METHODS: A total of twenty-four rats were divided into four groups (six animals in each group) as follows: (1) Control group; (2) acetic acid (AA)-induced colitis group (AA); (3) EMPA treatment group (AA + EMPA); (4) Dexamethasone (Dexa) treatment group (AA + Dexa). Animals in pre-treatment groups received EMPA (10 mg/kg, i.p.) or dexamethasone (4 mg/kg, i.p. as reference drug) for four consecutive days before induction of colitis by intra-rectal acetic acid (4% v/v) administration. Twenty-four hours after AA administration, rats were sacrificed and the colon tissues were removed for histopathological and biochemical evaluations. RESULTS: Pretreatment with EMPA significantly decreased colon weight/length ratio (81.00 ± 5.28 mg/cm vs. 108.80 ± 5.51 mg/cm) as well as, macroscopic (2.50 ± 0.57 vs. 3.75 ± 0.25) and histological scores (3.3 ± 0.14 vs. 1.98 ± 0.14) compared to the AA-induced colitis group (p < 0.01). Pretreatment with EMPA significantly reduced malondialdehyde (MDA) (324.0 ± 15.93 vs. 476.7 ± 32.26 nmol/mg p < 0.001) and increased glutathione level (117.5 ± 4.48 vs. 94.38 ± 3.950 µmol/mg, p < 0.01) in comparison to the AA-induced colitis group. Furthermore, a significant increase in catalase (44.60 ± 4.02 vs.14.59 ± 2.03 U/mg, P < 0.01), superoxide dismutase (283.9 ± 18.11 vs. 156.4 ± 7.92 U/mg, p < 0.001), and glutathione peroxidase (10.38 ± 1.45 vs. 2.508 ± 0.37, p < 0.01) activities were observed by EMPA pretreatment when compared to the AA-induced colitis group. These results were in line with those of the reference drug. CONCLUSIONS: It is concluded that EMPA could effectively reduce the severity of tissue injury in experimental colitis. This protective effect may be related to the antioxidative effects of EMPA drug.


Subject(s)
Acetic Acid , Colitis , Animals , Rats , Acetic Acid/toxicity , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Dexamethasone/pharmacology , Dexamethasone/therapeutic use
5.
Mol Divers ; 27(1): 177-192, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35344135

ABSTRACT

A new green mesoporous magnetically heterogeneous catalyst was prepared by the copper immobilization onto magnetic epoxidized soybean oil as a nano bio-support and was utilized for the synthesis of 1,4-disubstituted-1,2,3-triazole derivatives in the presence of amberlite supported azide. A great range of triazole derivatives were synthesized from benzyl halides or epoxides halides in high yields at the room temperature. The catalyst was characterized by various techniques such as FT-IR, XRD, VSM, FE-SEM, EDX, TEM, BET, TGA, and ICP analysis. This catalytic system can be reused for five times without any significant decrease in the catalytic activity. Fe3O4@SiO-ESBO/CuO nanocatalyst and amberlite supported azide as a green catalytic system has been used for the regioselective synthesis of triazole derivatives in water. A large range of triazole derivatives were synthesized from benzyl halides or epoxides in high yields.


Subject(s)
Azides , Copper , Epoxy Compounds , Magnetic Phenomena , Spectroscopy, Fourier Transform Infrared , Triazoles , Porosity , Catalysis
6.
J Insect Sci ; 23(4)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37480682

ABSTRACT

Nowadays, pyrethroid (Py) insecticides are commonly used against household insect pests and housefly. The combination of Py and organophosphates (OP) are also utilized to combat these insects. The resistance status of Iranian housefly populations to them and carbamate (CB) insecticides is uncertain. This study investigates the presence of acetylcholinesterase (AChE) mutations related to the resistance of Musca domestica to OP and/or CB insecticides in Northwestern Iran. Nucleotides 1041-1776, based on their positions in the ACE gene of aabys strain, were amplified and sequenced in houseflies collected from West Azerbaijan, Gilan, and Ardebil Provinces, Iran. Among 12 single-nucleotide polymorphisms detected, 3 mismatches were found at nucleotides 1174 (T/A, G), 1473 (G/T, C), and 1668 (T/A), leading to amino acid substitutions in V260L, G342A/V, and F407Y positions with various combinations. Genotyping results showed that 85% of specimens had at least one of these substitutions. In addition, the Iranian housefly population was composed of 5 insensitive and sensitive alleles. For the first time, the current study reports the presence of V260L, G342A, G342V, and F407Y substitutions in M. domestica specimens collected from Northwestern Iran. The selection of multiple alleles in field populations might be due to the application of various pesticides/insecticides during extended periods in the region. These molecular levels signify the presence of control problems in the area and the need for developing effective control strategies for such populations.


Subject(s)
Houseflies , Insecticides , Muscidae , Animals , Houseflies/genetics , Acetylcholinesterase/genetics , Iran , Insecticides/pharmacology , Nucleotides
7.
Environ Geochem Health ; 45(8): 5961-5979, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37195567

ABSTRACT

This study assessed the carcinogenic and non-carcinogenic health risks of cement plant workers exposed to chromium (Cr), arsenic (As), cadmium (Cd), and lead (Pb) in cement dust using a probabilistic approach. Air samples were collected according to NIOSH 7900 and OSHA ID-121 methods and analyzed by an graphite furnace atomic absorption spectrometer. The EPA inhalation risk assessment model and Monte Carlo simulation were utilized to assess the health risks. Sensitivity analysis was used to determine the influencing parameters on health risk. The average concentrations of As and Pb exceeded the occupational exposure limit (OEL), reaching a maximum of 3.4 and 1.7 times the OEL, respectively, in the cement mill. Individual metals' cancer risk exceeded the 1E-4 threshold in ascending order of Cd < As < Cr. The mean cancer risk of Cr ranged from 835E-4 (in raw mill) to 2870E-4 (in pre-heater and kiln). Except for Cd, the non-cancer risk of metals exceeded the standard (hazard index, HQ = 1) in the ascending order of Pb < As < Cr. The mean HQ of Cr ranged from 162.13 (in raw mill) to 558.73 (in pre-heater and kiln). After adjusting for control factors, the cancer and non-cancer risks remained over the respective recommended levels. Sensitivity analysis revealed that the concentration of Cr was the most influential parameter on both carcinogenic (78.5%) and non-carcinogenic (88.06%) risks. To protect the health of cement factory employees, it is recommended to minimize cement dust emissions, implement job rotation, and use raw materials with low levels of heavy metals.


Subject(s)
Arsenic , Metals, Heavy , Humans , Cadmium/toxicity , Cadmium/analysis , Dust/analysis , Monte Carlo Method , Lead/analysis , Environmental Monitoring/methods , Metals, Heavy/toxicity , Metals, Heavy/analysis , Chromium/toxicity , Chromium/analysis , Arsenic/toxicity , Arsenic/analysis , Risk Assessment , Carcinogens/analysis , China
8.
Environ Res ; 215(Pt 2): 114254, 2022 12.
Article in English | MEDLINE | ID: mdl-36096173

ABSTRACT

The impacts of nZVI and iron oxides on growth, physiology and elicitation of bioactive antioxidant metabolites in medicinal aromatic plants must be critically assessed to ensure their safe utilization within the food chain and achieve nutritional gains. The present study investigated and compared the morpho-physiological and biochemical changes of Leonurus cardiaca L. plants as affected by various concentrations (0, 250, 500 and 1000 mg L-1) of nZVI and Fe3O4. The foliar uptake of nZVI was verified through Scanning Electron Microscopy (SEM) images and Energy Dispersive X-ray (EDX) analytical spectra. Plants exposed to nZVI at low concentration showed comparatively monotonic deposition of NPs on the surface of leaves, however, the agglomerate size of nZVI was raised as their doses increased, leading to remarkable changes in anatomical and biochemical traits. 250 mg L-1 nZVI and 500 mg L-1 Fe3O4 significantly (P < 0.05) increased plant dry matter accumulation by 37.8 and 27% over the control, respectively. The treatments of nZVI and Fe3O4 at 250 mg L-1 significantly (P < 0.01) improved chlorophyll a content by 22.4% and 15.3% as compared to the control, and then a rapid decrease (by 14.8% and 4.1%) followed at 1000 mg L-1, respectively. Both nZVI and Fe3O4 at 250 mg L-1 had no significant impact on malondialdehyde (MDA) formation, however, at an exposure of 500-1000 mg L-1, the MDA levels and cellular electrolyte leakage were increased. Although nZVI particles could be utilized by plants and enhanced the synthesis of chlorophylls and secondary metabolites, they appeared to be more toxic than Fe3O4 at 1000 mg L-1. Exposure to nZVI levels showed positive, negative and or neutral impacts on leaf water content compared to control, while no significant difference was observed with Fe3O4 treatments. Soluble sugar, total phenolics and hyperoside content were significantly increased upon optimum concentrations of employed treatments-with 250 mg L-1 nZVI being most superior. Among the extracts, those obtained from plants treated with 250-500 mg L-1 nZVI revealed the strong antioxidant activity in terms of scavenging free radical (DPPH) and chelating ferrous ions. These results suggest that nZVI (at lower concentration) has alternative and additional benefits both as nano-fertilizer and nano-elicitor for biosynthesis of antioxidant metabolites in plants, but at high concentrations is more toxic than Fe3O4.


Subject(s)
Leonurus , Water Pollutants, Chemical , Antioxidants , Chlorophyll A , Ferric Compounds , Iron/chemistry , Leonurus/metabolism , Malondialdehyde , Sugars , Water/chemistry , Water Pollutants, Chemical/analysis
9.
Phytother Res ; 36(2): 824-841, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35023227

ABSTRACT

The use of herbal medicine has considerably grown worldwide in the past two decades. Studies have shown that the prevalence of herbal diet therapy in pregnancy ranged from 1% to 60% in different societies. Many clinical reports have shown that some herbal medicines may have toxic effects on pregnant women and their fetuses because active ingredients of some medicinal plants can readily pass through the biological barriers (e.g., placental barrier). In the present study, we aimed to systematically review the literature to discover potential benefits versus the hazards of herbal therapy during pregnancy. For this purpose, a comprehensive literature review was performed, and after the literature search and selection of the appropriate documents, the desired data were extracted and reported. From 35 articles with a total of 39,950 study population, the results showed that some medicinal plants could cause severe toxicity on mothers and fetuses, in addition to abortion during pregnancy. It was also shown that some plants may lead to developmental abnormalities or fetal death. Findings of this survey showed that some herbal medicines have toxic, teratogenic, and abortive potential, particularly in the first trimester of pregnancy because active ingredients of some medicinal plants are able to pass through the placental barrier and reach the fetus.


Subject(s)
Placenta , Plants, Medicinal , Herbal Medicine , Humans , Phytotherapy , Pregnancy , Surveys and Questionnaires
10.
Aesthetic Plast Surg ; 46(5): 2548-2555, 2022 10.
Article in English | MEDLINE | ID: mdl-35715535

ABSTRACT

BACKGROUND: Partial necrosis of skin flaps following plastic and reconstructive surgeries is one of the major problems in these medical interventions. This study was conducted to evaluate the beneficial effects of topiramate an anti-epileptic agent on ischemic random skin flaps. MATERIALS AND METHODS: Twenty-four Wistar rats were provided and randomly divided into four experimental groups (control group and low-, intermediate- and high-dose treatment groups). A rat random-pattern skin flap model was performed in all groups, and animals in the low-, intermediate- and high-dose experimental groups were administered topiramate intraperitoneally at doses of 25, 50 and 100 mg/kg, respectively, 1 h before raising the flap and once daily for 7 consecutive days after the initial surgical procedure. Control rats received vehicle according to the same schedule. On postoperative day 7 the flap necrotic area was measured, and tissue samples were stained with hematoxylin and eosin for histological analysis. Furthermore, the oxidative stress in flap tissue was assessed by measuring the activity of superoxide dismutase (SOD), glutathione (GSH) level and the content of malondialdehyde (MDA). RESULTS: Treating animals with 50 and 100 mg/kg topiramate significantly decreased the necrotic flap areas as compared to the control group. Histological studies demonstrated that in intermediate and high dose topiramate groups the inflammatory cell numbers were attenuated and microvessel development were markedly increased. Furthermore, the MDA contents were significantly reduced and GSH levels were significantly increased in these groups as compared to the control group. However, the SOD activity was increased significantly only in high-dose group as compared to the control group. CONCLUSIONS: These findings indicated that topiramate in doses of 50 and 100 mg/kg increases random skin flap survival. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Glutathione , Superoxide Dismutase , Animals , Rats , Eosine Yellowish-(YS) , Hematoxylin , Malondialdehyde , Necrosis , Rats, Wistar , Topiramate
11.
Int J Mol Sci ; 23(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36555634

ABSTRACT

The cysteine protease legumain (also known as asparaginyl endopeptidase or δ-secretase) is the only known mammalian asparaginyl endopeptidase and is primarily localized to the endolysosomal system, although it is also found extracellularly as a secreted protein. Legumain is involved in the regulation of diverse biological processes and tissue homeostasis, and in the pathogenesis of various malignant and nonmalignant diseases. In addition to its proteolytic activity that leads to the degradation or activation of different substrates, legumain has also been shown to have a nonproteolytic ligase function. This review summarizes the current knowledge about legumain functions in health and disease, including kidney homeostasis, hematopoietic homeostasis, bone remodeling, cardiovascular and cerebrovascular diseases, fibrosis, aging and senescence, neurodegenerative diseases and cancer. In addition, this review addresses the effects of some marketed drugs on legumain. Expanding our knowledge on legumain will delineate the importance of this enzyme in regulating physiological processes and disease conditions.


Subject(s)
Cysteine Proteases , Animals , Cysteine Endopeptidases/metabolism , Lysosomes/metabolism , Mammals/metabolism
12.
Br J Cancer ; 125(6): 775-777, 2021 09.
Article in English | MEDLINE | ID: mdl-33859343

ABSTRACT

Multiple myeloma is an incurable cancer of the bone marrow that is dependent on its microenvironment, including bone marrow adipocytes (BMAds). Here, we discuss our findings that the reciprocal interaction of myeloma cells and BMAds, leads to myeloma cell survival and induces metabolic dysfunction and senescence-associated secretory phenotype in BMAds.


Subject(s)
Adipocytes/pathology , Multiple Myeloma/pathology , Adipocytes/metabolism , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Survival , Humans , Metabolic Networks and Pathways , Multiple Myeloma/metabolism , Tumor Microenvironment
13.
Am J Emerg Med ; 44: 257-261, 2021 06.
Article in English | MEDLINE | ID: mdl-32291163

ABSTRACT

Testicular torsion is a common urologic emergency and one of the causes of genital injury in males. Hence, early diagnosis and treatment are necessary to prevent testicular damage and infertility. It has been proved that topiramate (TPM) a medication used to treat epilepsy and prevent migraines has anti-inflammatory and anti-oxidative effects. Therefore, this study was designed to determine the influence of TPM on ischemia/reperfusion injury following testicular torsion/detorsion (T/D). Thirty-six male Wistar rats were divided into three groups (n = 12 for each group) including sham operated, T/D + vehicle, T/D + TPM(100 mg/kg, 30 min before detorsion). Testicular torsion was induced for 1 h by rotating right testis 7200 in the clockwise direction. After 5 h of reperfusion the testis was removed and histological changes and biochemical markers such as superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and levels of malondialdehyde (MDA) and reduced glutathione (GSH) were evaluated. MDA level significantly increased and GSH level significantly decreased after T/D compared to the sham group (p < 0.001). Moreover, after inducing testicular T/D, GPx, CAT and SOD activity were decreased, whereas administration of TPM significantly increased GSH level and GPx, CAT and SOD activities and decreased MDA level in testis tissue as compared to T/D group. After induction of T/D, histopathological evaluations also revealed severe testicular damages which were improved by TPM administration. Our results indicate that TPM had an ameliorating impact on ischemia/reperfusion injury in the rat model of testicular T/D. This protective effect was most likely induced by anti-oxidative properties of this drug.


Subject(s)
Reperfusion Injury/prevention & control , Spermatic Cord Torsion/complications , Testis/blood supply , Testis/enzymology , Topiramate/pharmacology , Animals , Disease Models, Animal , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar
14.
Breast Cancer Res ; 22(1): 102, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32993755

ABSTRACT

BACKGROUND: Breast cancer arises within specific regions in the human breast referred to as the terminal duct lobular units (TDLUs). These are relatively dynamic structures characterized by sex hormone driven cyclic epithelial turnover. TDLUs consist of unique parenchymal entities embedded within a fibroblast-rich lobular stroma. Here, we established and characterized a new human breast lobular fibroblast cell line against its interlobular counterpart with a view to assessing the role of region-specific stromal cues in the control of TDLU dynamics. METHODS: Primary lobular and interlobular fibroblasts were transduced to express human telomerase reverse transcriptase (hTERT). Differentiation of the established cell lines along lobular and interlobular pathways was determined by immunocytochemical staining and genome-wide RNA sequencing. Their functional properties were further characterized by analysis of mesenchymal stem cell (MSC) differentiation repertoire in culture and in vivo. The cells' physiological relevance for parenchymal differentiation was examined in heterotypic co-culture with fluorescence-activated cell sorting (FACS)-purified normal breast primary luminal or myoepithelial progenitors. The co-cultures were immunostained for quantitative assessment of epithelial branching morphogenesis, polarization, growth, and luminal epithelial maturation. In extension, myoepithelial progenitors were tested for luminal differentiation capacity in culture and in mouse xenografts. To unravel the significance of transforming growth factor-beta (TGF-ß)-mediated crosstalk in TDLU-like morphogenesis and differentiation, fibroblasts were incubated with the TGF-ß signaling inhibitor, SB431542, prior to heterotypic co-culture with luminal cells. RESULTS: hTERT immortalized fibroblast cell lines retained critical phenotypic traits in culture and linked to primary fibroblasts. Cell culture assays and transplantation to mice showed that the origin of fibroblasts determines TDLU-like and ductal-like differentiation of epithelial progenitors. Whereas lobular fibroblasts supported a high level of branching morphogenesis by luminal cells, interlobular fibroblasts supported ductal-like myoepithelial characteristics. TDLU-like morphogenesis, at least in part, relied on intact TGF-ß signaling. CONCLUSIONS: The significance of the most prominent cell type in normal breast stroma, the fibroblast, in directing epithelial differentiation is largely unknown. Through establishment of lobular and interlobular fibroblast cell lines, we here demonstrate that epithelial progenitors are submitted to stromal cues for site-specific differentiation. Our findings lend credence to considering stromal subtleties of crucial importance in the development of normal breast and, in turn, breast cancer.


Subject(s)
Breast Neoplasms/pathology , Breast/cytology , Cell Differentiation , Epithelial Cells/cytology , Fibroblasts/cytology , Stem Cells/metabolism , Stromal Cells/cytology , Adult , Animals , Breast/metabolism , Breast Neoplasms/metabolism , Cell Line , Coculture Techniques , Epithelial Cells/metabolism , Female , Fibroblasts/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Stem Cells/cytology , Stromal Cells/metabolism , Xenograft Model Antitumor Assays , Young Adult
15.
Stem Cells ; 37(3): 407-416, 2019 03.
Article in English | MEDLINE | ID: mdl-30485583

ABSTRACT

Understanding the mechanisms regulating recruitment of human skeletal (stromal or mesenchymal) stem cells (hMSC) to sites of tissue injury is a prerequisite for their successful use in cell replacement therapy. Chemokine-like protein TAFA2 is a recently discovered neurokine involved in neuronal cell migration and neurite outgrowth. Here, we demonstrate a possible role for TAFA2 in regulating recruitment of hMSC to bone fracture sites. TAFA2 increased the in vitro trans-well migration and motility of hMSC in a dose-dependent fashion and induced significant morphological changes including formation of lamellipodia as revealed by high-content-image analysis at single-cell level. Mechanistic studies revealed that TAFA2 enhanced hMSC migration through activation of the Rac1-p38 pathway. In addition, TAFA2 enhanced hMSC proliferation, whereas differentiation of hMSC toward osteoblast and adipocyte lineages was not altered. in vivo studies demonstrated transient upregulation of TAFA2 gene expression during the inflammatory phase of fracture healing in a closed femoral fracture model in mice, and a similar pattern was observed in serum levels of TAFA2 in patients after hip fracture. Finally, interleukin-1ß was found as an upstream regulator of TAFA2 expression. Our findings demonstrate that TAFA2 enhances hMSC migration and recruitment and thus is relevant for regenerative medicine applications. Stem Cells 2019;37:407-416.


Subject(s)
Cell Movement/drug effects , Chemokines, CC/pharmacology , MAP Kinase Signaling System/drug effects , Mesenchymal Stem Cells/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , rac1 GTP-Binding Protein/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Chemokines, CC/metabolism , Disease Models, Animal , Hip Fractures/metabolism , Hip Fractures/pathology , Humans , Mesenchymal Stem Cells/pathology , Mice , Neuropeptides/metabolism , Osteoblasts/metabolism , Osteoblasts/pathology
16.
Int Arch Occup Environ Health ; 91(3): 349-359, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29242980

ABSTRACT

PURPOSE: The present study aimed to compare the concentration of isoflurane and sevoflurane in the individual's breathing zone and ambient air of operating rooms (ORs), to investigate the correlation between breathing zone levels and urinary concentrations, and to evaluate the ORs pollution in the different working hours and weeks. METHODS: Environmental and biological concentrations of isoflurane and sevoflurane were evaluated at 9ORs. Air samples were collected by active sampling method and urine samples were collected from each subject at the end of the work shift. All samples were analyzed using gas chromatography. RESULTS: The geometric mean ± GSD concentration of isoflurane and sevoflurane in breathing zone air were 1.41 ± 2.27 and 0.005 ± 1.74 ppm, respectively, while in post-shift urine were 2.42 ± 2.86 and 0.006 ± 3.83 µg/lurine, respectively. A significant positive correlation was found between the urinary and environmental concentration of isoflurane (r 2 = 0.724, P < 0.0001). The geometric mean ± GSD values of isoflurane and sevoflurane in ambient air were 2.30 ± 2.43 and 0.004 ± 1.56 ppm, respectively. The isoflurane concentration was different for three studied weeks and significantly increased over time in the ambient air of ORs. CONCLUSIONS: The occupational exposure of OR personnel to isoflurane and sevoflurane was lower than national recommended exposure limits. The urinary isoflurane could be a good internal dose biomarker for monitoring of occupational isoflurane exposure. Considering the accumulation of anesthetic waste gases in the studied ORs, real-time air monitoring is better to be done at the end of the work shift.


Subject(s)
Isoflurane/analysis , Methyl Ethers/analysis , Occupational Exposure/analysis , Operating Rooms , Adult , Air Pollutants, Occupational/analysis , Air Pollutants, Occupational/urine , Air Pollution, Indoor/analysis , Anesthetics, Inhalation/analysis , Anesthetics, Inhalation/urine , Biomarkers/urine , Environmental Monitoring/methods , Female , Humans , Iran , Isoflurane/urine , Male , Methyl Ethers/urine , Middle Aged , Personnel, Hospital , Sevoflurane , Ventilation
17.
Arch Toxicol ; 91(9): 3109-3120, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28551710

ABSTRACT

Aluminum phosphide (AlP), one of the most commonly used pesticides worldwide, has been the leading cause of self-poisoning mortalities among many Asian countries. The heart is the main organ affected in AlP poisoning. Melatonin has been previously shown to be beneficial in reversing toxic changes in the heart. The present study reveals evidence on the probable protective effects of melatonin on AlP-induced cardiotoxicity in rats. The study groups included a control (almond oil only), ethanol 5% (solvent), sole melatonin (50 mg/kg), AlP (16.7 mg/kg), and 4 AlP + melatonin groups which received 20, 30, 40 and 50 mg/kg of melatonin by intraperitoneal injections following AlP treatment. An electronic cardiovascular monitoring device was used to record the electrocardiographic (ECG) parameters. Heart tissues were studied in terms of oxidative stress biomarkers, mitochondrial complexes activities, ADP/ATP ratio and apoptosis. Abnormal ECG records as well as declined heart rate and blood pressure were found to be related to AlP administration. Based on the results, melatonin was highly effective in controlling AlP-induced changes in the study groups. Significant improvements were observed in the activities of mitochondrial complexes, oxidative stress biomarkers, the activities of caspases 3 and 9, and ADP/ATP ratio following treatment with melatonin at doses of 40 and 50 mg/kg. Our results indicate that melatonin can counteract the AlP-induced oxidative damage in the heart. This is mainly done by maintaining the normal balance of intracellular ATP as well as the prevention of oxidative damage. Further research is warranted to evaluate the possibility of using melatonin as an antidote in AlP poisoning.


Subject(s)
Aluminum Compounds/toxicity , Cardiotonic Agents/pharmacology , Cardiotoxicity/prevention & control , Melatonin/pharmacology , Phosphines/toxicity , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Blood Pressure/drug effects , Cardiotoxicity/etiology , Cardiotoxicity/mortality , Caspase 3/metabolism , Caspase 9/metabolism , Electrocardiography , Heart Rate/drug effects , Male , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Rats, Wistar , Superoxide Dismutase/metabolism
18.
Breast Cancer Res ; 18(1): 108, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27809866

ABSTRACT

BACKGROUND: The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human breast. We here demonstrate the impact on epithelium of two lineages of breast stromal fibroblasts, one of which accumulates in the TDLU while the other resides outside the TDLU in the interlobular stroma. METHODS: The two lineages are prospectively isolated by fluorescence activated cell sorting (FACS) based on different expression levels of CD105 and CD26. The characteristics of the two fibroblast lineages are assessed by immunocytochemical staining and gene expression analysis. The differentiation capacity of the two fibroblast populations is determined by exposure to specific differentiating conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271low/MUC1high normal breast luminal epithelial cells are plated on fibroblast feeders for the observation of morphological development. Epithelial structure formation and polarization is shown by immunofluorescence and digitalized quantification of immunoperoxidase-stained cultures. RESULTS: Lobular fibroblasts are CD105high/CD26low while interlobular fibroblasts are CD105low/CD26high. Once isolated the two lineages remain phenotypically stable and functionally distinct in culture. Lobular fibroblasts have properties in common with bone marrow derived mesenchymal stem cells and they specifically convey growth and branching morphogenesis of epithelial progenitors. CONCLUSIONS: Two distinct functionally specialized fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that lobular fibroblasts constitute a specialized microenvironment for human breast luminal epithelial progenitors, i.e. the putative precursors of breast cancer.


Subject(s)
Fibroblasts/cytology , Fibroblasts/metabolism , Mammary Glands, Human/cytology , Mammary Glands, Human/metabolism , Stromal Cells/cytology , Stromal Cells/metabolism , Biomarkers , Cell Differentiation , Cell Lineage , Cluster Analysis , Female , Flow Cytometry , Gene Expression Profiling , Humans , Immunophenotyping , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Phenotype
19.
Stem Cells ; 33(7): 2219-31, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25858613

ABSTRACT

Development of novel approaches to enhance bone regeneration is needed for efficient treatment of bone defects. Protein kinases play a key role in regulation of intracellular signal transduction pathways, and pharmacological targeting of protein kinases has led to development of novel treatments for several malignant and nonmalignant conditions. We screened a library of kinase inhibitors to identify small molecules that enhance bone formation by human skeletal (stromal or mesenchymal) stem cells (hMSC). We identified H-8 (known to inhibit protein kinases A, C, and G) as a potent enhancer of ex vivo osteoblast (OB) differentiation of hMSC, in a stage- and cell type-specific manner, without affecting adipogenesis or osteoclastogenesis. Furthermore, we showed that systemic administration of H-8 enhances in vivo bone formation by hMSC, using a preclinical ectopic bone formation model in mice. Using functional screening of known H-8 targets, we demonstrated that inhibition of protein kinase G1 (PRKG1) and consequent activation of RhoA-Akt signaling is the main mechanism through which H-8 enhances osteogenesis. Our studies revealed PRKG1 as a novel negative regulator of OB differentiation and suggest that pharmacological inhibition of PRKG1 in hMSC implanted at the site of bone defect can enhance bone regeneration. Stem Cells 2015;33:2219-2231.


Subject(s)
Bone and Bones/metabolism , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Cell Differentiation , Humans , Mesenchymal Stem Cells/cytology , Mice , Protein Kinases/pharmacology , Signal Transduction , Transfection
20.
Arch Toxicol ; 88(5): 1069-82, 2014 May.
Article in English | MEDLINE | ID: mdl-24691703

ABSTRACT

In the past decade, an increasing urge to develop new and novel methods for the treatment of degenerative diseases where there is currently no effective therapy has lead to the emerging of the cell therapy or cellular therapeutics approach for the management of those conditions where organ functions are restored through transplantation of healthy and functional cells. Stem cells, because of their nature, are currently considered among the most suitable cell types for cell therapy. There are an increasing number of studies that have tested the stromal stem cell functionality both in vitro and in vivo. Consequently, stromal (mesenchymal) stem cells (MSCs) are being introduced into many clinical trials due to their ease of isolation and efficacy in treating a number of disease conditions in animal preclinical disease models. The aim of this review is to revise MSC biology, their potential translation in therapy, and the challenges facing their adaptation in clinical practice.


Subject(s)
Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Adipocytes/cytology , Cell Differentiation , Chondrocytes/cytology , Graft vs Host Disease , Humans , Osteoblasts/cytology , Pluripotent Stem Cells/cytology , Regeneration , Stem Cell Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL