Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Am J Hum Genet ; 111(4): 636-653, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38490207

ABSTRACT

Cigarette smoking adversely affects many aspects of human health, and epigenetic responses to smoking may reflect mechanisms that mediate or defend against these effects. Prior studies of smoking and DNA methylation (DNAm), typically measured in leukocytes, have identified numerous smoking-associated regions (e.g., AHRR). To identify smoking-associated DNAm features in typically inaccessible tissues, we generated array-based DNAm data for 916 tissue samples from the GTEx (Genotype-Tissue Expression) project representing 9 tissue types (lung, colon, ovary, prostate, blood, breast, testis, kidney, and muscle). We identified 6,350 smoking-associated CpGs in lung tissue (n = 212) and 2,735 in colon tissue (n = 210), most not reported previously. For all 7 other tissue types (sample sizes 38-153), no clear associations were observed (false discovery rate 0.05), but some tissues showed enrichment for smoking-associated CpGs reported previously. For 1,646 loci (in lung) and 22 (in colon), smoking was associated with both DNAm and local gene expression. For loci detected in both lung and colon (e.g., AHRR, CYP1B1, CYP1A1), top CpGs often differed between tissues, but similar clusters of hyper- or hypomethylated CpGs were observed, with hypomethylation at regulatory elements corresponding to increased expression. For lung tissue, 17 hallmark gene sets were enriched for smoking-associated CpGs, including xenobiotic- and cancer-related gene sets. At least four smoking-associated regions in lung were impacted by lung methylation quantitative trait loci (QTLs) that co-localize with genome-wide association study (GWAS) signals for lung function (FEV1/FVC), suggesting epigenetic alterations can mediate the effects of smoking on lung health. Our multi-tissue approach has identified smoking-associated regions in disease-relevant tissues, including effects that are shared across tissue types.


Subject(s)
Cigarette Smoking , DNA Methylation , Male , Female , Humans , DNA Methylation/genetics , Epigenesis, Genetic , Genome-Wide Association Study , Smoking/adverse effects , Smoking/genetics , Gene Expression
2.
Biochemistry ; 62(13): 2041-2054, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37307069

ABSTRACT

The lncRNA human Hox transcript antisense intergenic RNA (hHOTAIR) regulates gene expression by recruiting chromatin modifiers. The prevailing model suggests that hHOTAIR recruits hnRNPB1 to facilitate intermolecular RNA-RNA interactions between the lncRNA HOTAIR and its target gene transcripts. This B1-mediated RNA-RNA interaction modulates the structure of hHOTAIR, attenuates its inhibitory effect on polycomb repression complex 2, and enhances its methyl transferase activity. However, the molecular details by which the nuclear hnRNPB1 protein assembles on the lncRNA HOTAIR have not yet been described. Here, we investigate the molecular interactions between hnRNPB1 and Helix-12 (hHOTAIR). We show that the low-complexity domain segment (LCD) of hnRNPB1 interacts with a strong affinity for Helix-12. Our studies revealed that unbound Helix-12 folds into a specific base-pairing pattern and contains an internal loop that, as determined by thermal melting and NMR studies, exhibits hydrogen bonding between strands and forms the recognition site for the LCD segment. In addition, mutation studies show that the secondary structure of Helix-12 makes an important contribution by acting as a landing pad for hnRNPB1. The secondary structure of Helix-12 is involved in specific interactions with different domains of hnRNPB1. Finally, we show that the LCD unwinds Helix-12 locally, indicating its importance in the hHOTAIR restructuring mechanism.


Subject(s)
RNA, Long Noncoding , Humans , Polycomb Repressive Complex 2 , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
3.
BMC Genomics ; 24(1): 226, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37127568

ABSTRACT

Open reading frames (ORFs) with fewer than 100 codons are generally not annotated in genomes, although bona fide genes of that size are known. Newer biochemical studies have suggested that thousands of small protein-coding ORFs (smORFs) may exist in the human genome, but the true number and the biological significance of the micropeptides they encode remain uncertain. Here, we used a comparative genomics approach to identify high-confidence smORFs that are likely protein-coding. We identified 3,326 high-confidence smORFs using constraint within human populations and evolutionary conservation as additional lines of evidence. Next, we validated that, as a group, our high-confidence smORFs are conserved at the amino-acid level rather than merely residing in highly conserved non-coding regions. Finally, we found that high-confidence smORFs are enriched among disease-associated variants from GWAS. Overall, our results highlight that smORF-encoded peptides likely have important functional roles in human disease.


Subject(s)
Peptides , Proteins , Humans , Open Reading Frames , Proteins/genetics , Peptides/genetics , Genome, Human , Micropeptides
4.
Proc Natl Acad Sci U S A ; 114(9): 2206-2211, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28193894

ABSTRACT

Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a multipurpose RNA-binding protein (RBP) involved in normal and pathological RNA metabolism. Transcriptome-wide mapping and in vitro evolution identify consensus hnRNP A1 binding motifs; however, such data do not reveal how surrounding RNA sequence and structural context modulate affinity. We determined the affinity of hnRNP A1 for all possible sequence variants (n = 16,384) of the HIV exon splicing silencer 3 (ESS3) 7-nt apical loop. Analysis of the affinity distribution identifies the optimal motif 5'-YAG-3' and shows how its copy number, position in the loop, and loop structure modulate affinity. For a subset of ESS3 variants, we show that specificity is determined by association rate constants and that variants lacking the minimal sequence motif bind competitively with consensus RNA. Thus, the results reveal general rules of specificity of hnRNP A1 and provide a quantitative framework for understanding how it discriminates between alternative competing RNA ligands in vivo.


Subject(s)
Alternative Splicing , Heterogeneous Nuclear Ribonucleoprotein A1/chemistry , Protein Interaction Domains and Motifs , RNA, Viral/chemistry , Base Pairing , Base Sequence , Binding Sites , Exons , HIV/genetics , HIV/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Humans , Introns , Kinetics , Models, Molecular , Nucleic Acid Conformation , Protein Binding , RNA, Viral/genetics , RNA, Viral/metabolism , Thermodynamics
5.
Nucleic Acids Res ; 45(22): 12987-13003, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29069516

ABSTRACT

RNA-protein interactions with physiological outcomes usually rely on conserved sequences within the RNA element. By contrast, activity of the diverse gamma-interferon-activated inhibitor of translation (GAIT)-elements relies on the conserved RNA folding motifs rather than the conserved sequence motifs. These elements drive the translational silencing of a group of chemokine (CC/CXC) and chemokine receptor (CCR) mRNAs, thereby helping to resolve physiological inflammation. Despite sequence dissimilarity, these RNA elements adopt common secondary structures (as revealed by 2D-1H NMR spectroscopy), providing a basis for their interaction with the RNA-binding GAIT complex. However, many of these elements (e.g. those derived from CCL22, CXCL13, CCR4 and ceruloplasmin (Cp) mRNAs) have substantially different affinities for GAIT complex binding. Toeprinting analysis shows that different positions within the overall conserved GAIT element structure contribute to differential affinities of the GAIT protein complex towards the elements. Thus, heterogeneity of GAIT elements may provide hierarchical fine-tuning of the resolution of inflammation.


Subject(s)
Chemokines/genetics , Gene Expression Regulation , RNA, Messenger/genetics , Silencer Elements, Transcriptional/genetics , 3' Untranslated Regions/genetics , Animals , Base Sequence , Chemokine CCL22/genetics , Chemokine CCL22/metabolism , Chemokines/metabolism , Conserved Sequence/genetics , Humans , Inflammation/genetics , Inflammation/metabolism , Mice, Knockout , Mice, Transgenic , Nucleic Acid Conformation , Operon , RNA, Messenger/chemistry , RNA, Messenger/metabolism , U937 Cells
6.
J Biol Chem ; 291(5): 2331-44, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26607354

ABSTRACT

Splicing patterns in human immunodeficiency virus type 1 (HIV-1) are maintained through cis regulatory elements that recruit antagonistic host RNA-binding proteins. The activity of the 3' acceptor site A7 is tightly regulated through a complex network of an intronic splicing silencer (ISS), a bipartite exonic splicing silencer (ESS3a/b), and an exonic splicing enhancer (ESE3). Because HIV-1 splicing depends on protein-RNA interactions, it is important to know the tertiary structures surrounding the splice sites. Herein, we present the NMR solution structure of the phylogenetically conserved ISS stem loop. ISS adopts a stable structure consisting of conserved UG wobble pairs, a folded 2X2 (GU/UA) internal loop, a UU bulge, and a flexible AGUGA apical loop. Calorimetric and biochemical titrations indicate that the UP1 domain of heterogeneous nuclear ribonucleoprotein A1 binds the ISS apical loop site-specifically and with nanomolar affinity. Collectively, this work provides additional insights into how HIV-1 uses a conserved RNA structure to commandeer a host RNA-binding protein.


Subject(s)
Alternative Splicing , Gene Silencing , HIV-1/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Introns , Amino Acid Sequence , Base Sequence , Enhancer Elements, Genetic , Heterogeneous Nuclear Ribonucleoprotein A1 , Humans , Magnetic Resonance Spectroscopy , Models, Genetic , Molecular Sequence Data , Nucleic Acid Conformation , Open Reading Frames , Phylogeny , Protein Binding , Protein Structure, Tertiary , RNA/chemistry , Sequence Homology, Amino Acid , Terminal Repeat Sequences
7.
Chembiochem ; 15(11): 1573-7, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24954297

ABSTRACT

Isotope labeling has revolutionized NMR studies of small nucleic acids, but to extend this technology to larger RNAs, site-specific labeling tools to expedite NMR structural and dynamics studies are required. Using enzymes from the pentose phosphate pathway, we coupled chemically synthesized uracil nucleobase with specifically (13) C-labeled ribose to synthesize both UTP and CTP in nearly quantitative yields. This chemoenzymatic method affords a cost-effective preparation of labels that are unattainable by current methods. The methodology generates versatile (13) C and (15) N labeling patterns which, when employed with relaxation-optimized NMR spectroscopy, effectively mitigate problems of rapid relaxation that result in low resolution and sensitivity. The methodology is demonstrated with RNAs of various sizes, complexity, and function: the exon splicing silencer 3 (27 nt), iron responsive element (29 nt), Pro-tRNA (76 nt), and HIV-1 core encapsidation signal (155 nt).


Subject(s)
Molecular Dynamics Simulation , Pyrimidine Nucleotides/biosynthesis , RNA/chemistry , Nuclear Magnetic Resonance, Biomolecular , Pyrimidine Nucleotides/chemistry , RNA/metabolism , Stereoisomerism
8.
J Phys Chem B ; 128(35): 8409-8422, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39190773

ABSTRACT

The thermodynamic landscape of the CRISPR/Cas9 system plays a crucial role in understanding and optimizing the performance of this revolutionary genome-editing technology. In this research, we utilized isothermal titration calorimetry and microscale thermophoresis techniques to thoroughly investigate the thermodynamic properties governing CRISPR/Cas9 interactions. Our findings revealed that the binding between sgRNA and Cas9 is primarily governed by entropy, which compensates for an unfavorable enthalpy change. Conversely, the interaction between the CRISPR RNP complex and the target DNA is characterized by a favorable enthalpy change, offsetting an unfavorable entropy change. Notably, both interactions displayed negative heat capacity changes, indicative of potential hydration, ionization, or structural rearrangements. However, we noted that the involvement of water molecules and counterions in the interactions is minimal, suggesting that structural rearrangements play a significant role in influencing the binding thermodynamics. These results offer a nuanced understanding of the energetic contributions and structural dynamics underlying CRISPR-mediated gene editing. Such insights are invaluable for optimizing the efficiency and specificity of CRISPR-based genome editing applications, ultimately advancing our ability to precisely manipulate genetic material in various organisms for research, therapeutic, and biotechnological purposes.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Thermodynamics , Gene Editing/methods , DNA/chemistry , DNA/metabolism , DNA/genetics , Calorimetry , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/chemistry , RNA, Guide, CRISPR-Cas Systems/chemistry , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics
9.
Epigenetics Chromatin ; 17(1): 25, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118140

ABSTRACT

BACKGROUND: While the association of chronological age with DNA methylation (DNAm) in whole blood has been extensively studied, the tissue-specificity of age-related DNAm changes remains an active area of research. Studies investigating the association of age with DNAm in tissues such as brain, skin, immune cells, fat, and liver have identified tissue-specific and non-specific effects, thus, motivating additional studies of diverse human tissue and cell types. RESULTS: Here, we performed an epigenome-wide association study, leveraging DNAm data (Illumina EPIC array) from 961 tissue samples representing 9 tissue types (breast, lung, colon, ovary, prostate, skeletal muscle, testis, whole blood, and kidney) from the Genotype-Tissue Expression (GTEx) project. We identified age-associated CpG sites (false discovery rate < 0.05) in 8 tissues (all except skeletal muscle, n = 47). This included 162,002 unique hypermethylated and 90,626 hypomethylated CpG sites across all tissue types, with 130,137 (80%) hypermethylated CpGs and 74,703 (82%) hypomethylated CpG sites observed in a single tissue type. While the majority of age-associated CpG sites appeared tissue-specific, the patterns of enrichment among genomic features, such as chromatin states and CpG islands, were similar across most tissues, suggesting common mechanisms underlying cellular aging. Consistent with previous findings, we observed that hypermethylated CpG sites are enriched in regions with repressed polycomb signatures and CpG islands, while hypomethylated CpG sites preferentially occurred in non-CpG islands and enhancers. To gain insights into the functional effects of age-related DNAm changes, we assessed the correlation between DNAm and local gene expression changes to identify age-related expression quantitative trait methylation (age-eQTMs). We identified several age-eQTMs present in multiple tissue-types, including in the CDKN2A, HENMT1, and VCWE regions. CONCLUSION: Overall, our findings will aid future efforts to develop biomarkers of aging and understand mechanisms of aging in diverse human tissue types.


Subject(s)
Aging , CpG Islands , DNA Methylation , Organ Specificity , Humans , Aging/genetics , Female , Male , Adult , Genome-Wide Association Study , Middle Aged , Aged , Epigenesis, Genetic , Epigenome
10.
Autophagy ; 19(12): 3201-3220, 2023 12.
Article in English | MEDLINE | ID: mdl-37516933

ABSTRACT

ABBREVIATIONS: AF2: AlphaFold2; AF2-Mult: AlphaFold2 multimer; ATG: autophagy-related; CTD: C-terminal domain; ECTD: extreme C-terminal domain; FR: flexible region; MD: molecular dynamics; NTD: N-terminal domain; pLDDT: predicted local distance difference test; UBL: ubiquitin-like.


Subject(s)
Autophagy , Ubiquitin-Conjugating Enzymes , Ubiquitin-Conjugating Enzymes/metabolism , Furylfuramide , Autophagy-Related Proteins , Artificial Intelligence
11.
J Mol Biol ; 434(18): 167728, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35870649

ABSTRACT

Alternative splicing of the HIV transcriptome is controlled through cis regulatory elements functioning as enhancers or silencers depending on their context and the type of host RNA binding proteins they recruit. Splice site acceptor A3 (ssA3) is one of the least used acceptor sites in the HIV transcriptome and its activity determines the levels of tat mRNA. Splice acceptor 3 is regulated by a combination of cis regulatory sequences, auxiliary splicing factors, and presumably RNA structure. The mechanisms by which these multiple regulatory components coordinate to determine the frequency in which ssA3 is utilized is poorly understood. By NMR spectroscopy and phylogenetic analysis, we show that the ssA3 regulatory locus is conformationally heterogeneous and that the sequences that encompass the locus are conserved across most HIV isolates. Despite the conformational heterogeneity, the major stem loop (A3SL1) observed in vitro folds to base pair the Polypyrimdine Tract (PPyT) to the Exon Splicing Silencer 2p (ESS2p) element and to a conserved downstream linker. The 3D structure as determined by NMR spectroscopy further reveals that the A3 consensus cleavage site is embedded within a unique stereochemical environment within the apical loop, where it is surrounded by alternating base-base interactions. Despite being described as a receptor for hnRNP H, the ESS2p element is sequestered by base pairing to the 3' end of the PPyT and within this context it cannot form a stable complex with hnRNP H. By comparison, hnRNP A1 directly binds to the A3 consensus cleavage site located within the apical loop, suggesting that it can directly modulate U2AF assembly. Sequence mutations designed to destabilize the PPyT:ESS2p helix results in an increase usage of ssA3 within HIV-infected cells, consistent with the PPyT becoming more accessible for U2AF recognition. Additional mutations introduced into the downstream ESS2 element synergize with ESS2p to cause further increases in ssA3 usage. When taken together, our work provides a unifying picture by which cis regulatory sequences, splicing auxiliary factors and RNA structure cooperate to provide stringent control over ssA3. We describe this as the pair-and-lock mechanism to restrict access of the PPyT, and posit that it operates to regulate a subset of the heterogenous structures encompassing the ssA3 regulatory locus.


Subject(s)
Alternative Splicing , HIV Infections , HIV-1 , Heterogeneous Nuclear Ribonucleoprotein A1 , Heterogeneous-Nuclear Ribonucleoprotein Group F-H , RNA Splice Sites , RNA Splicing Factors , RNA, Viral , Regulatory Sequences, Ribonucleic Acid , HIV Infections/virology , HIV-1/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism , Humans , Mutation , Nucleic Acid Conformation , RNA Splicing Factors/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism
12.
Chem Commun (Camb) ; 57(78): 10083-10086, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34514483

ABSTRACT

Zinc deficiency is linked to poor prognosis in COVID-19 patients while clinical trials with zinc demonstrate better clinical outcomes. The molecular targets and mechanistic details of the anti-coronaviral activity of zinc remain obscure. We show that zinc not only inhibits the SARS-CoV-2 main protease (Mpro) with nanomolar affinity, but also viral replication. We present the first crystal structure of the Mpro-Zn2+ complex at 1.9 Å and provide the structural basis of viral replication inhibition. We show that Zn2+ coordinates with the catalytic dyad at the enzyme active site along with two previously unknown water molecules in a tetrahedral geometry to form a stable inhibited Mpro-Zn2+ complex. Further, the natural ionophore quercetin increases the anti-viral potency of Zn2+. As the catalytic dyad is highly conserved across SARS-CoV, MERS-CoV and all variants of SARS-CoV-2, Zn2+ mediated inhibition of Mpro may have wider implications.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Zinc/chemistry , Animals , Binding Sites , COVID-19/pathology , Catalytic Domain , Chlorocebus aethiops , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Humans , Ions/chemistry , Kinetics , Molecular Dynamics Simulation , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/isolation & purification , Surface Plasmon Resonance , Thermodynamics , Vero Cells , Virus Replication/drug effects
13.
Biochemistry ; 49(17): 3703-14, 2010 May 04.
Article in English | MEDLINE | ID: mdl-20345178

ABSTRACT

High-resolution crystal structures and biophysical analyses of purine-sensing riboswitches have revealed that a network of hydrogen bonding interactions appear to be largey responsible for discrimination of cognate ligands against structurally related compounds. Here we report that by using femtosecond time-resolved fluorescence spectroscopy to capture the ultrafast decay dynamics of the 2-aminopurine base as the ligand, we have detected the presence of multiple conformations of the ligand within the binding pockets of one guanine-sensing and two adenine-sensing riboswitches. All three riboswitches have similar conformational distributions of the ligand-bound state. The known crystal structures represent the global minimum that accounts for 50-60% of the population, where there is no significant stacking interaction between the ligand and bases of the binding pocket, but the hydrogen-bonding cage collectively provides an electronic environment that promotes an ultrafast ( approximately 1 ps) charge transfer pathway. The ligand also samples multiple conformations in which it significantly stacks with either the adenine or the uracil bases of the A21-U75 and A52-U22 base pairs that form the ceiling and floor of the binding pocket, respectively, but favors the larger adenine bases. These alternative conformations with well-defined base stacking interactions are approximately 1-1.5 kcal/mol higher in DeltaG degrees than the global minimum and have distinct charge transfer dynamics within the picosecond to nanosecond time regime. Inside the pocket, the purine ligand undergoes dynamic motion on the low nanosecond time scale, sampling the multiple conformations based on time-resolved anisotropy decay dynamics. These results allowed a description of the energy landscape of the bound ligand with intricate details and demonstrated the elastic nature of the ligand recognition mode by the purine-sensing riboswitches, where there is a dynamic balance between hydrogen bonding and base stacking interactions, yielding the high affinity and specificity by the aptamer domain.


Subject(s)
2-Aminopurine/chemistry , Adenine/chemistry , Aptamers, Nucleotide/chemistry , Guanine/chemistry , RNA, Catalytic/chemistry , Base Pairing , Base Sequence , Binding Sites , Fluorescence Polarization , Hydrogen Bonding , Ligands , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Spectrometry, Fluorescence , Thermodynamics
14.
Talanta ; 195: 46-54, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30625570

ABSTRACT

The analysis of protein-nucleic acid interactions is essential for biophysics related research. However, simple, rapid, and accurate methods for quantitative analysis of biomolecular interactions are lacking. We herein establish an electrochemical biosensor approach for protein-nucleic acid binding analysis. Nanoparticle based sensors are fabricated by highly-controlled inkjet printing followed by plasma conversion. A novel bioconjugation method is demonstrated as a simple and rapid approach for protein-based biosensor fabrication. As a proof of concept, we analyzed the binding interaction between unwinding protein 1 (UP1) and SL3ESS3 RNA, confirming the accuracy of this nanoparticle based electrochemical biosensor approach with traditional biophysical methods. We further accurately profiled and differentiated a unique binding interaction pattern of multiple G-tract nucleic acid sequences with heterogeneous nuclear ribonucleoprotein H1. Our study provides insights into a potentially universal platform for in vitro biomolecule interaction analysis using a nanoparticle based electrochemical biosensor approach.


Subject(s)
Biosensing Techniques , DNA/chemistry , Gold/chemistry , Heterogeneous-Nuclear Ribonucleoproteins/chemistry , Metal Nanoparticles/chemistry , RNA, Spliced Leader/chemistry , Electrochemical Techniques
SELECTION OF CITATIONS
SEARCH DETAIL