ABSTRACT
Metabolic pathways and proteins responsible for maintaining mitochondrial dynamics and homeostasis in the Plasmodium parasite, the causative agent of malaria, remain to be elucidated. Here, we identified and functionally characterized a novel OPA3-like domain-containing protein in P. falciparum (PfOPA3). We show that PfOPA3 is expressed in the intraerythrocytic stages of the parasite and localizes to the mitochondria. Inducible knock-down of PfOPA3 using GlmS ribozyme hindered the normal intraerythrocytic cycle of the parasites; specifically, PfOPA3-iKD disrupted parasite development as well as parasite division and segregation at schizont stages, which resulted in a drastic reduction in the number of merozoites progenies. Parasites lacking PfOPA3 show severe defects in the development of functional mitochondria; the mitochondria showed reduced activity of mtETC but not ATP synthesis, as evidenced by reduced activity of complex III of the mtETC, and increased sensitivity for drugs targeting DHODH as well as complex III, but not to the drugs targeting complex V. Further, PfOPA3 downregulation leads to reduction in the level of mitochondrial proton transport uncoupling protein (PfUCP) to compensate reduced activity of complex III and maintain proton efflux across the inner membrane. The reduced activity of DHODH, which is responsible for pyrimidine biosynthesis required for nuclear DNA synthesis, resulted in a significant reduction in parasite nuclear division and generation of progeny. In conclusion, we show that PfOPA3 is essential for the functioning of mtETC and homeostasis required for the development of functional mitochondria as well as for parasite segregation, and thus PfOPA3 is crucial for parasite survival during blood stages.
Subject(s)
Malaria, Falciparum , Parasites , Animals , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Parasites/metabolism , Dihydroorotate Dehydrogenase , Electron Transport Complex III/metabolism , Protons , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Malaria, Falciparum/metabolism , Mitochondria/metabolism , Homeostasis , Cell Proliferation , Erythrocytes/metabolismABSTRACT
Ebola virus (EBOV) causes lethal disease in humans but not in mice. Here, we generated recombinant mouse-adapted (MA) EBOVs, including 1 based on the previously reported serially adapted strain (rMA-EBOV), along with single-reporter rMA-EBOVs expressing either fluorescent (ZsGreen1 [ZsG]) or bioluminescent (nano-luciferase [nLuc]) reporters, and dual-reporter rMA-EBOVs expressing both ZsG and nLuc. No detriment to viral growth in vitro was seen with inclusion of MA-associated mutations or reporter proteins. In CD-1 mice, infection with MA-EBOV, rMA-EBOV, and single-reporter rMA-EBOVs conferred 100% lethality; infection with dual-reporter rMA-EBOV resulted in 73% lethality. Bioluminescent signal from rMA-EBOV expressing nLuc was detected in vivo and ex vivo using the IVIS Spectrum CT. Fluorescent signal from rMA-EBOV expressing ZsG was detected in situ using handheld blue-light transillumination and ex vivo through epi-illumination with the IVIS Spectrum CT. These data support the use of reporter MA-EBOV for studies of Ebola virus in animal disease models.
Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Animals , Mice , Ebolavirus/genetics , Virulence , MutationABSTRACT
BACKGROUND: The natural history and clinical progression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can be better understood using combined serological and reverse-transcription polymerase chain reaction (RT-PCR) testing. METHODS: Nasopharyngeal swabs and serum were collected at a single time-point from patients at an urban, public hospital during August-November 2020 and tested for SARS-CoV-2 using RT-PCR, viral culture, and anti-spike pan-immunoglobulin antibody testing. Participant demographics and symptoms were collected through interview. The χâ2 and Fisher exact tests were used to identify associations between RT-PCR and serology results with presence of viable virus and frequency of symptoms. RESULTS: Among 592 participants, 129 (21.8%) had evidence of SARS-CoV-2 infection by RT-PCR or serology. Presence of SARS-CoV-2 antibodies was strongly associated with lack of viable virus (P = .016). COVID-19 symptom frequency was similar for patients testing RT-PCR positive/seronegative and patients testing RT-PCR positive/seropositive. Patients testing RT-PCR positive/seronegative reported headaches, fatigue, diarrhea, and vomiting at rates not statistically significantly different from those testing RT-PCR negative/seropositive. CONCLUSIONS: While patients testing SARS-CoV-2 seropositive were unlikely to test positive for viable virus and were therefore at low risk for forward transmission, coronavirus disease 2019 (COVID-19) symptoms were common. Paired SARS-CoV-2 RT-PCR and antibody testing provides more nuanced understanding of patients' COVID-19 status.
Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , Adolescent , Adult , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/immunology , Female , Humans , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Young AdultABSTRACT
We assessed the relationship between antigen and reverse transcription PCR (RT-PCR) test positivity and successful virus isolation. We found that antigen test results were more predictive of virus recovery than RT-PCR results. However, virus was isolated from some antigen-negative and RT-PCRâpositive paired specimens, providing support for the Centers for Disease Control and Prevention antigen testing algorithm.
Subject(s)
COVID-19 , Reverse Transcription , Antigens, Viral , COVID-19/diagnosis , Humans , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and SpecificityABSTRACT
Rapid antigen tests, such as the Abbott BinaxNOW COVID-19 Ag Card (BinaxNOW), offer results more rapidly (approximately 15-30 minutes) and at a lower cost than do highly sensitive nucleic acid amplification tests (NAATs) (1). Rapid antigen tests have received Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for use in symptomatic persons (2), but data are lacking on test performance in asymptomatic persons to inform expanded screening testing to rapidly identify and isolate infected persons (3). To evaluate the performance of the BinaxNOW rapid antigen test, it was used along with real-time reverse transcription-polymerase chain reaction (RT-PCR) testing to analyze 3,419 paired specimens collected from persons aged ≥10 years at two community testing sites in Pima County, Arizona, during November 3-17, 2020. Viral culture was performed on 274 of 303 residual real-time RT-PCR specimens with positive results by either test (29 were not available for culture). Compared with real-time RT-PCR testing, the BinaxNOW antigen test had a sensitivity of 64.2% for specimens from symptomatic persons and 35.8% for specimens from asymptomatic persons, with near 100% specificity in specimens from both groups. Virus was cultured from 96 of 274 (35.0%) specimens, including 85 (57.8%) of 147 with concordant antigen and real-time RT-PCR positive results, 11 (8.9%) of 124 with false-negative antigen test results, and none of three with false-positive antigen test results. Among specimens positive for viral culture, sensitivity was 92.6% for symptomatic and 78.6% for asymptomatic individuals. When the pretest probability for receiving positive test results for SARS-CoV-2 is elevated (e.g., in symptomatic persons or in persons with a known COVID-19 exposure), a negative antigen test result should be confirmed by NAAT (1). Despite a lower sensitivity to detect infection, rapid antigen tests can be an important tool for screening because of their quick turnaround time, lower costs and resource needs, high specificity, and high positive predictive value (PPV) in settings of high pretest probability. The faster turnaround time of the antigen test can help limit transmission by more rapidly identifying infectious persons for isolation, particularly when used as a component of serial testing strategies.
Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , Community Health Services , Adolescent , Adult , Aged , Aged, 80 and over , Arizona/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Child , Female , Humans , Male , Middle Aged , Sensitivity and Specificity , Time Factors , Young AdultABSTRACT
Background & objectives: Varicella zoster virus (VZV) strains are classified into six different clades based on the sequencing of its genome. Clades 4 and 5 are reported from India based on the single-nucleotide polymorphism (SNP). Till now, multiple clade circulations using partial sequences have been reported from India due to the lack of availability of the full VZV genome sequence. This study conducted a genome sequencing of VZV in India to identify circulating clade. Methods: Four clinical samples obtained from symptomatic patients tested positive for VZV by real-time PCR were used. These four samples were preferred to retrieve the genomic VZV sequence using the next-generation sequencing method. A reference-based assembly method was used to retrieve the genome of VZV, which was further analyzed. Results: At the least, 98 per cent of the whole-genome sequences were recovered from the four samples. The VZV sequences obtained in this study formed a separate monophyletic branch with clade 5, indicating it to be evolved from a distinct ancestor. The nucleotide-based analysis revealed 13 different SNP mutations and one multiple nucleotide variation in the VZV sequences when compared to one of the clade 5 genomes having accession number: DQ457052.1. Interpretation & conclusions: The present study described approximately 98 per cent of the genome sequence of VZV from India. The availability of these genomic sequences will lead to enrichment in the clinical genomic data set from India. The available data would help in the development of diagnostic methods along with evolutionary analysis. We hypothesize the existence of a new sub-clade that belongs to clade 5 and propose further experiments to confirm these results.
Subject(s)
Herpes Zoster , Herpesvirus 3, Human , Humans , Genome, Viral/genetics , Genotype , Herpes Zoster/epidemiology , Herpes Zoster/genetics , Herpesvirus 3, Human/genetics , Phylogeny , Polymorphism, Single NucleotideABSTRACT
Immobilization of cadmium (Cd) and lead (Pb) along with the alleviation of their phytotoxicity in Mentha arvensis by biochar was examined in this investigation. A greenhouse experiment was executed to evaluate the effect of biochar (BC) amended Cd and Pb spiked soil on their immobilization and uptake, plant growth, photosynthetic attributes (total chlorophyll, photosynthetic rate, transpiration rate, and stomatal activity) and oxidative enzymes (guaiacol peroxidase: POD; catalase: CAT and superoxide dismutase: SOD). In the present study, the photosynthetic attributes showed that BC significantly improved the total chlorophyll, photosynthetic, transpiration rates, and stomatal activity in the plants. The incorporation of BC in soil increase the Pb and Cd tolerance in M. arvensis vis-à-vis improved the biomass yield and nutrient intake. In addition, biochar has also reduced the POD, CAT, and SOD in the plant as well as improved the soil pH and enzymatic activities. Overall, BC immobilized the Cd and Pb in soil by providing the binding site to the metals and reduced the phytotoxicity in M. arvensis. However, large-scale field trials of BC are required for safe cultivation of M. arvensis which is known for its phytopharmaceuticals importance.
Subject(s)
Cadmium/analysis , Charcoal/chemistry , Lead/analysis , Mentha/drug effects , Biomass , Catalase/metabolism , Mentha/metabolism , Menthol/analysis , Oils, Volatile/analysis , Peroxidase/metabolism , Photosynthesis/drug effects , Plant Development/drug effects , Soil/chemistry , Soil Pollutants/analysis , Superoxide Dismutase/metabolismABSTRACT
In 1954, a virus named Wad Medani virus (WMV) was isolated from Hyalomma marginatum ticks from Maharashtra State, India. In 1963, another virus was isolated from Sturnia pagodarum birds in Tamil Nadu, India, and named Kammavanpettai virus (KVPTV) based on the site of its isolation. Originally these virus isolates could not be identified with conventional methods. Here we describe next-generation sequencing studies leading to the determination of their complete genome sequences, and identification of both virus isolates as orbiviruses (family Reoviridae). Sequencing data showed that KVPTV has an AT-rich genome, whereas the genome of WMV is GC-rich. The size of the KVPTV genome is 18â234 nucleotides encoding proteins ranging 238-1290 amino acids (aa) in length. Similarly, the size of the WMV genome is 16â941 nucleotides encoding proteins ranging 214-1305 amino acids in length. Phylogenetic analysis of the VP1 gene, along with the capsid genes VP5 and VP7, revealed that KVPTV is likely a novel mosquito-borne virus and WMV is a tick-borne orbivirus. This study focuses on the phylogenetic comparison of these newly identified orbiviruses with mosquito-, tick- and Culicoides-borne orbiviruses isolated in India and other countries.
Subject(s)
Culicidae/virology , Mosquito Vectors/virology , Reoviridae Infections/transmission , Reoviridae/genetics , Animals , Genome, Viral , India , Mice , PhylogenyABSTRACT
BACKGROUND: Dandruff is a common scalp condition characterized by excessive scaling and itch. Aberrant colonization of the scalp by commensal Malassezia spp. is a major contributor in the multifactorial etiology of dandruff. Literature based understanding of Malassezia linked pathophysiology of dandruff allowed us to comprehend a strategy to potentiate the efficacy of a known antifungal agent used in dandruff therapy. The aim of this study was to determine the efficacy and skin safety of VB-001 antidandruff leave-on formulation in comparison with marketed antidandruff ZPTO shampoo in patients with moderate adherent dandruff of the scalp. METHODS: Healthy males or females aged ≥ 15 years and ≤ 65 with a clinical diagnosis of moderate adherent dandruff of the scalp were recruited for the study to monitor the effects of topical VB-001 versus those of marketed antidandruff ZPTO shampoo. RESULTS: 168 subjects were randomized to the treatment (VB-001, n = 84) and control (ZPTO shampoo, n = 84) groups. The efficacy of each product was evaluated by comparing proportion of subjects who have shown reduction in flaking by ASFS (adherent scalp flaking score) and pruritus by IGA (investigator global assessment) score. VB-001 imparted consistently better reduction in ASFS and enabled early reduction of pruritus in comparison to marketed ZPTO shampoo. CONCLUSION: VB-001, a leave-on formulation with ingredients chosen to selectively disturb the Malassezia niche on dandruff scalp by denying extra nutritional benefits to the microbe, provides unique advantages over existing best in class ZPTO shampoo therapy. It has the potential to emerge as an attractive novel treatment for moderate adherent dandruff. TRIAL REGISTRATION: CTRI Registration number: CTRI/2013/01/003283 . Registered on: 02/01/2013.
Subject(s)
Antifungal Agents/therapeutic use , Dandruff/drug therapy , Dermatomycoses/drug therapy , Imidazoles/therapeutic use , Malassezia , Administration, Topical , Adolescent , Adult , Aged , Dandruff/microbiology , Hair Preparations , Humans , Keratolytic Agents/therapeutic use , Malassezia/drug effects , Middle Aged , Organometallic Compounds/therapeutic use , Pyridines/therapeutic use , Young AdultABSTRACT
Propionibacterium acnes is a key pathogenic factor in the development of acne. Antibiotics are the first choice of treatment for mild-to-moderate, mixed, papular/pustular, and moderate nodular acne, and an alternative choice in severe, nodular/conglobate acne. The emergence of resistance to the currently available antibiotics poses a serious set-back to this algorithm, and the reduced arsenal can diminish efficacy of treatment. This emerging situation should catalyze innovations in dermatology; for example, newer drugs and technologies such as next-generation antibiotics with excellent potency and low propensity to develop resistance, rapid diagnostic platforms to select responders and nonresponders, and delivery technologies that target the bacteria. Such innovations can dramatically expand the arsenal for dermatologists in the management of acne.
Subject(s)
Acne Vulgaris/microbiology , Drug Resistance, Bacterial , Propionibacterium acnes , Acne Vulgaris/drug therapy , Acne Vulgaris/epidemiology , Administration, Cutaneous , Anti-Bacterial Agents/administration & dosage , Drug Resistance, Multiple, Bacterial , Global Health , Humans , Microbial Sensitivity Tests , Prevalence , Propionibacterium acnes/drug effects , United States/epidemiologyABSTRACT
BACKGROUND OR STATEMENT OF PROBLEM: As, the longevity of provisional restorations is related to, a perfect adaptation and a strong, long-term union between restoration and teeth structures, therefore, evaluation of marginal leakage of provisional restorative materials luted with cements using the standardized procedures is essential. AIMS AND OBJECTIVES: To compare the marginal leakage of the provisional crowns fabricated from Autopolymerizing acrylic resin crowns and bisphenol A-glycidyl dimethacrylate (BIS-GMA) resin crowns. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin crowns and BIS-GMA resin crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin (SC-10) crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from BIS-GMA resin crowns (Protemp 4) cemented with different temporary luting cements. METHODOLOGY: Freshly extracted 60 maxillary premolars of approximately similar dimensions were mounted in dental plaster. Tooth reduction with shoulder margin was planned to use a customized handpiece-holding jig. Provisional crowns were prepared using the wax pattern fabricated from computer aided designing/computer aided manufacturing milling machine following the tooth preparation. Sixty provisional crowns were made, thirty each of SC-10 and Protemp 4 and were then cemented with three different luting cements. Specimens were thermocycled, submerged in a 2% methylene blue solution, then sectioned and observed under a stereomicroscope for the evaluation of marginal microleakage. A five-level scale was used to score dye penetration in the tooth/cement interface and the results of this study was analyzed using the Chi-square test, Mann-Whitney U-test, Kruskal-Wallis H-test and the results were statistically significant P < 0.05 the power of study - 80%. RESULTS: Marginal leakage was significant in both provisional crowns cemented with three different luting cements along the axial walls of teeth (P < 0.05) confidence interval - 95%. CONCLUSION: The temporary cements with eugenol showed more microleakage than those without eugenol. SC-10 crowns showed more microleakage compared to Protemp 4 crowns. SC-10 crowns cemented with Kalzinol showed maximum microleakage and Protemp 4 crowns cemented with HY bond showed least microleakage.
ABSTRACT
The functional mitochondrion is vital for the propagation of the malaria parasite in the human host. Members of the SPFH protein family, Prohibitins (PHBs), are known to play crucial roles in maintaining mitochondrial homeostasis and cellular functions. Here, we have functionally characterized the homologue of the Plasmodium falciparumProhibitin-2 (PfPhb2) protein. A transgenic parasite line, generated using the selection-linked integration (SLI) strategy for C-terminal tagging, was utilized for cellular localization as well as for inducible knock-down of PfPhb2. We show that PfPhb2 localizes in the parasite mitochondrion during the asexual life cycle. Inducible knock-down of PfPhb2 by GlmS ribozyme caused no significant effect on the growth and multiplication of parasites. However, depletion of PfPhb2 under mitochondrial-specific stress conditions, induced by inhibiting the essential mitochondrial AAA-protease, ClpQ protease, results in enhanced inhibition of parasite growth, mitochondrial ROS production, mitochondrial membrane potential loss and led to mitochondrial fission/fragmentation, ultimately culminating in apoptosis-like cell-death. Further, PfPhb2 depletion renders the parasites more susceptible to mitochondrial targeting drug proguanil. These data suggest the functional involvement of PfPhb2 along with ClpQ protease in stabilization of various mitochondrial proteins to maintain mitochondrial homeostasis and functioning. Overall, we show that PfPhb2 has an anti-apoptotic role in maintaining mitochondrial homeostasis in the parasite.
ABSTRACT
Nipah virus (NiV) causes near-annual outbreaks of fatal encephalitis and respiratory disease in South Asia with a high mortality rate (â¼70%). Since there are no approved therapeutics for NiV disease in humans, the WHO has designated NiV and henipaviral diseases priority pathogens for research and development. We generated a new recombinant green fluorescent reporter NiV of the circulating Bangladesh genotype (rNiV-B-ZsG) and optimized it alongside our previously generated Malaysian genotype reporter counterpart (rNiV-M-ZsG) for antiviral screening in primary-like human respiratory cell types. Validating our platform for rNiV-B-ZsG with a synthetic compound library directed against viral RNA-dependent RNA polymerases, we identified a hit compound and confirmed its sub-micromolar activity against wild-type NiV, green fluorescent reporter, and the newly constructed bioluminescent red fluorescent double reporter (rNiV-B-BREP) NiV. We furthermore demonstrated that rNiV-B-ZsG and rNiV-B-BREP viruses showed pathogenicity comparable to wild-type NiV-B in the Syrian golden hamster model of disease, supporting additional use of these tools for both pathogenesis and advanced pre-clinical studies in vivo.
ABSTRACT
Colon cancer affects people of all ages. However, its frequency, as well as the related morbidity and mortality, are high among older adults. The complex physiological changes in the aging gut substantially limit the development of cancer therapies. Here, we identify a potentially unique intestinal microenvironment that is linked with an increased risk of colon cancer in older adults. Our findings show that aging markedly influenced persistent fucosylation of the apical surfaces of intestinal epithelial cells, which resulted in a favorable environment for tumor growth. Furthermore, our findings shed light on the importance of the host-commensal interaction, which facilitates the dysregulation of fucosylation and promotes tumor growth as people get older. We analyzed colonic microbial populations at the species level to find changes associated with aging that could contribute to the development of colon cancer. Analysis of single-cell RNA-sequencing data from previous publications identified distinct epithelial cell subtypes involved in dysregulated fucosylation in older adults. Overall, our study provides compelling evidence that excessive fucosylation is associated with the development of colon cancer, that age-related changes increase vulnerability to colon cancer, and that a dysbiosis in microbial diversity and metabolic changes in the homeostasis of older mice dysregulate fucosylation levels with age.
Subject(s)
Colonic Neoplasms , Humans , Mice , Animals , Aged , Colonic Neoplasms/metabolism , Glycosylation , Epithelial Cells/metabolism , Intestinal Mucosa/pathology , Tumor MicroenvironmentABSTRACT
Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe human disease and is considered a WHO priority pathogen due to the lack of efficacious vaccines and antivirals. A CCHF virus replicon particle (VRP) has previously shown protective efficacy in a lethal Ifnar-/- mouse model when administered as a single dose at least 3 days prior to challenge. Here, we determine that non-specific immune responses are not sufficient to confer short-term protection, since Lassa virus VRP vaccination 3 days prior to CCHFV challenge was not protective. We also investigate how CCHF VRP vaccination confers protective efficacy by examining viral kinetics, histopathology, clinical analytes and immunity early after challenge (3 and 6 days post infection) and compare to unvaccinated controls. We characterize how these effects differ based on vaccination period and correspond to previously reported CCHF VRP-mediated protection. Vaccinating Ifnar-/- mice with CCHF VRP 28, 14, 7, or 3 days prior to challenge, all known to confer complete protection, significantly reduced CCHFV viral load, mucosal shedding, and markers of clinical disease, with greater reductions associated with longer vaccination periods. Interestingly, there were no significant differences in innate immune responses, T cell activation, or antibody titers after challenge between groups of mice vaccinated a week or more before challenge, but higher anti-NP antibody avidity and effector function (ADCD) were positively associated with longer vaccination periods. These findings support the importance of antibody-mediated responses in VRP vaccine-mediated protection against CCHFV infection.
ABSTRACT
The rapid emergence of divergent SARS-CoV-2 variants has led to an update of the COVID-19 booster vaccine to a monovalent version containing the XBB.1.5 spike. To determine the neutralization breadth following booster immunization, we collected blood samples from 24 individuals pre- and post-XBB.1.5 mRNA booster vaccination (â¼1 month). The XBB.1.5 booster improved both neutralizing activity against the ancestral SARS-CoV-2 strain (WA1) and the circulating Omicron variants, including EG.5.1, HK.3, HV.1, XBB.1.5 and JN.1. Relative to the pre-boost titers, the XBB.1.5 monovalent booster induced greater total IgG and IgG subclass binding, particular IgG4, to the XBB.1.5 spike as compared to the WA1 spike. We evaluated antigen-specific memory B cells (MBCs) using either spike or receptor binding domain (RBD) probes and found that the monovalent booster largely increases non-RBD cross-reactive MBCs. These data suggest that the XBB.1.5 monovalent booster induces cross-reactive antibodies that neutralize XBB.1.5 and related Omicron variants.
ABSTRACT
SARS-CoV-2 has the capacity to evolve mutations that escape vaccine- and infection-acquired immunity and antiviral drugs. A variant-agnostic therapeutic agent that protects against severe disease without putting selective pressure on the virus would thus be a valuable biomedical tool that would maintain its efficacy despite the ongoing emergence of new variants. Here, we challenge male rhesus macaques with SARS-CoV-2 Delta-the most pathogenic variant in a highly susceptible animal model. At the time of challenge, we also treat the macaques with aerosolized RBD-62, a protein developed through multiple rounds of in vitro evolution of SARS-CoV-2 RBD to acquire 1000-fold enhanced ACE2 binding affinity. RBD-62 treatment equivalently suppresses virus replication in both upper and lower airways, a phenomenon not previously observed with clinically approved vaccines. Importantly, RBD-62 does not block the development of virus-specific T- and B-cell responses and does not elicit anti-drug immunity. These data provide proof-of-concept that RBD-62 can prevent severe disease from a highly virulent variant.
Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 , SARS-CoV-2 , Virus Replication , Animals , Humans , Male , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/pharmacology , Chlorocebus aethiops , COVID-19/virology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Drug Treatment , Disease Models, Animal , Macaca mulatta , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Virus Replication/drug effectsABSTRACT
Arenaviruses are highly pathogenic viruses that pose a serious public health threat. Chapare virus (CHAV) and Machupo virus (MACV), two New World arenaviruses, cause hemorrhagic fevers with case fatality rates of up to 45%. Research on therapeutic drug targets and vaccines for these viruses is limited because biosafety level 4 containment is required for handling them. In this study, we developed reverse genetics systems, including minigenomes and recombinant viruses, that will facilitate the study of these pathogens. The minigenome system is based on the S segment of CHAV or MACV genomes expressing the fluorescent reporter gene ZsGreen (ZsG). We also generated recombinant CHAV and MACV with and without the ZsG reporter gene. As a proof-of-concept study, we used both minigenomes and recombinant viruses to test the inhibitory effects of previously reported antiviral compounds. The new reverse genetics system described here will facilitate future therapeutic studies for these two life-threatening arenaviruses.
Subject(s)
Arenaviruses, New World , Reverse GeneticsABSTRACT
Seoul virus (SEOV) is an emerging global health threat that can cause hemorrhagic fever with renal syndrome (HFRS), which results in case fatality rates of â¼2%. There are no approved treatments for SEOV infections. We developed a cell-based assay system to identify potential antiviral compounds for SEOV and generated additional assays to characterize the mode of action of any promising antivirals. To test if candidate antivirals targeted SEOV glycoprotein-mediated entry, we developed a recombinant reporter vesicular stomatitis virus expressing SEOV glycoproteins. To facilitate the identification of candidate antiviral compounds targeting viral transcription/replication, we successfully generated the first reported minigenome system for SEOV. This SEOV minigenome (SEOV-MG) screening assay will also serve as a prototype assay for discovery of small molecules inhibiting replication of other hantaviruses, including Andes and Sin Nombre viruses. Ours is a proof-of-concept study in which we tested several compounds previously reported to have activity against other negative-strand RNA viruses using our newly developed hantavirus antiviral screening systems. These systems can be used under lower biocontainment conditions than those needed for infectious viruses, and identified several compounds with robust anti-SEOV activity. Our findings have important implications for the development of anti-hantavirus therapeutics.