Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Brain Behav Immun ; 115: 120-130, 2024 01.
Article in English | MEDLINE | ID: mdl-37806533

ABSTRACT

Microbiome science has been one of the most exciting and rapidly evolving research fields in the past two decades. Breakthroughs in technologies including DNA sequencing have meant that the trillions of microbes (particularly bacteria) inhabiting human biological niches (particularly the gut) can be profiled and analysed in exquisite detail. This microbiome profiling has profound impacts across many fields of research, especially biomedical science, with implications for how we understand and ultimately treat a wide range of human disorders. However, like many great scientific frontiers in human history, the pioneering nature of microbiome research comes with a multitude of challenges and potential pitfalls. These include the reproducibility and robustness of microbiome science, especially in its applications to human health outcomes. In this article, we address the enormous promise of microbiome science and its many challenges, proposing constructive solutions to enhance the reproducibility and robustness of research in this nascent field. The optimisation of microbiome science spans research design, implementation and analysis, and we discuss specific aspects such as the importance of ecological principals and functionality, challenges with microbiome-modulating therapies and the consideration of confounding, alternative options for microbiome sequencing, and the potential of machine learning and computational science to advance the field. The power of microbiome science promises to revolutionise our understanding of many diseases and provide new approaches to prevention, early diagnosis, and treatment.


Subject(s)
Microbiota , Humans , Reproducibility of Results , Machine Learning
2.
Circulation ; 141(17): 1393-1403, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32093510

ABSTRACT

BACKGROUND: High blood pressure (BP) continues to be a major, poorly controlled but modifiable risk factor for cardiovascular death. Among key Western lifestyle factors, a diet poor in fiber is associated with prevalence of high BP. The impact of lack of prebiotic fiber and the associated mechanisms that lead to higher BP are unknown. Here we show that lack of prebiotic dietary fiber leads to the development of a hypertensinogenic gut microbiota, hypertension and its complications, and demonstrate a role for G-protein coupled-receptors (GPCRs) that sense gut metabolites. METHODS: One hundred seventy-nine mice including C57BL/6J, gnotobiotic C57BL/6J, and knockout strains for GPR41, GPR43, GPR109A, and GPR43/109A were included. C57BL/6J mice were implanted with minipumps containing saline or a slow-pressor dose of angiotensin II (0.25 mg·kg-1·d-1). Mice were fed diets lacking prebiotic fiber with or without addition of gut metabolites called short-chain fatty acids ([SCFA)] produced during fermentation of prebiotic fiber in the large intestine), or high prebiotic fiber diets. Cardiac histology and function, BP, sodium and potassium excretion, gut microbiome, flow cytometry, catecholamines and methylation-wide changes were determined. RESULTS: Lack of prebiotic fiber predisposed mice to hypertension in the presence of a mild hypertensive stimulus, with resultant pathological cardiac remodeling. Transfer of a hypertensinogenic microbiota to gnotobiotic mice recapitulated the prebiotic-deprived hypertensive phenotype, including cardiac manifestations. Reintroduction of SCFAs to fiber-depleted mice had protective effects on the development of hypertension, cardiac hypertrophy, and fibrosis. The cardioprotective effect of SCFAs were mediated via the cognate SCFA receptors GPR43/GPR109A, and modulated L-3,4-dihydroxyphenylalanine levels and the abundance of T regulatory cells regulated by DNA methylation. CONCLUSIONS: The detrimental effects of low fiber Westernized diets may underlie hypertension, through deficient SCFA production and GPR43/109A signaling. Maintaining a healthy, SCFA-producing microbiota is important for cardiovascular health.


Subject(s)
Dietary Fiber/deficiency , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome , Hypertension , Intestinal Mucosa , Prebiotics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , Hypertension/genetics , Hypertension/metabolism , Hypertension/microbiology , Hypertension/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mice , Mice, Knockout , Receptors, G-Protein-Coupled/genetics
4.
J Immunol ; 202(11): 3151-3160, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30996002

ABSTRACT

Kawasaki disease (KD) is a leading cause of pediatric heart disease, characterized by the emergence of life-threatening coronary vasculitis. Identifying which cytokines drive KD has been a major research goal, and both TNF and IL-1 have been identified as potential candidates. Using a murine model of KD induced by the injection of the water-soluble component of Candida albicans, we therefore undertook a mechanistic study to determine how and when these two cytokines mediate cardiac inflammation. In this study, we show that TNF signaling is active in the acute phase of cardiac inflammation, which is characterized by a diffuse myocarditis that precedes the development of coronary vasculitis. Mechanistically, TNF is produced by the myeloid cells and triggers acute cardiac inflammation by stimulating both stromal and immune compartments of the heart. In contrast to this early involvement for TNF, IL-1 signaling is dispensable for the development of acute myocarditis. Critically, although mice deficient in IL-1 signaling have extensive acute inflammation following C. albicans water-soluble complex challenge, they do not develop coronary vasculitis. Thus, TNF and IL-1 appear to play temporally distinct roles in KD, with TNF being active in acute cardiac inflammation and IL-1 in the subsequent development of coronary vasculitis. These observations have important implications for understanding the progression of cardiac pathology in KD and the relative therapeutic use of targeting these cytokines.


Subject(s)
Candida albicans/immunology , Coronary Vessels/pathology , Interleukin-1/metabolism , Mucocutaneous Lymph Node Syndrome/immunology , Myocarditis/immunology , Tumor Necrosis Factor-alpha/metabolism , Vasculitis/immunology , Animals , Antigens, Fungal/immunology , Disease Models, Animal , Humans , Interleukin-1/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Tumor Necrosis Factor-alpha/genetics
5.
J Immunol ; 202(11): 3282-3296, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31004011

ABSTRACT

The adult heart contains macrophages derived from both embryonic and adult bone marrow (BM)-derived precursors. This population diversity prompted us to explore how distinct macrophage subsets localize within the heart, and their relative contributions in cardiac disease. In this study, using the reciprocal expression of Lyve-1 and Ccr2 to distinguish macrophages with distinct origins, we show that, in the steady state, both embryonic (Lyvepos) and BM-derived (Ccr2pos) macrophages populate the major vessels of the heart in mice and humans. However, cardiac macrophage populations are markedly perturbed by inflammation. In a mouse model of Kawasaki disease, BM-derived macrophages preferentially increase during acute cardiac inflammation and selectively accumulate around major cardiac vessels. The accumulation of BM-derived macrophages coincides with the loss of their embryonic counterparts and is an initiating, essential step in the emergence of subsequent cardiac vasculitis in this experimental model. Finally, we demonstrate that the accumulation of Ccr2pos macrophages (and the development of vasculitis) occurs in close proximity to a population of Ccr2 chemokine ligand-producing epicardial cells, suggesting that the epicardium may be involved in localizing inflammation to cardiac vessels. Collectively, our findings identify the perivascular accumulation of BM-derived macrophages as pivotal in the pathogenesis of cardiac vasculitis and provide evidence about the mechanisms governing their recruitment to the heart.


Subject(s)
Embryonic Stem Cells/cytology , Macrophages/immunology , Mucocutaneous Lymph Node Syndrome/immunology , Myocarditis/immunology , Myocardium/immunology , Pericardium/immunology , Vasculitis/immunology , Animals , Cell Movement , Cell Proliferation , Coronary Vessels/pathology , Disease Models, Animal , Humans , Membrane Transport Proteins/metabolism , Mice , Receptors, CCR2/metabolism
6.
Curr Opin Nephrol Hypertens ; 28(2): 97-104, 2019 03.
Article in English | MEDLINE | ID: mdl-30531472

ABSTRACT

PURPOSE OF REVIEW: To summarize evidence supporting that microorganisms colonizing our gastrointestinal tract, collectively known as the gut microbiota, are implicated in the development and maintenance of hypertension in experimental models. RECENT FINDINGS: The use of gnotobiotic (germ-free) mice has been essential for advancement in this area: they develop higher blood pressure (BP) if they receive faecal transplants from hypertensive patients compared to normotensive donors, and germ-free mice have a blunted response to angiotensin II. Experimental hypertension is consistently accompanied by changes in the composition of the gut microbiota. This is combined with a shift in microbial diversity and the deterioration of the gut epithelial barrier commonly referred to as gut dysbiosis. Restoration of normal gut biosis and microbiota alleviates and protects against the development of hypertension in both genetic and pharmacological models. This has been achieved by the use of antibiotics, faecal transplants between normotensive and hypertensive strains, and the use of prebiotics (i.e. food stuff that feeds the microbiota), probiotics (i.e. live bacteria) and gut metabolites (i.e. short-chain fatty acids). SUMMARY: Research into experimental hypertension supports that the gut microbiota contributes to the regulation of BP. Manipulation of the microbiota might represent a new tool to prevent hypertension.


Subject(s)
Disease Models, Animal , Dysbiosis/complications , Gastrointestinal Microbiome , Germ-Free Life , Hypertension/microbiology , Animals , Blood Pressure , Diet , Dietary Supplements , Dysbiosis/therapy , Humans , Hypertension/drug therapy , Hypertension/physiopathology , Models, Theoretical
8.
Hypertension ; 81(7): 1450-1459, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38586958

ABSTRACT

According to several international, regional, and national guidelines on hypertension, lifestyle interventions are the first-line treatment to lower blood pressure (BP). Although diet is one of the major lifestyle modifications described in hypertension guidelines, dietary fiber is not specified. Suboptimal intake of foods high in fiber, such as in Westernized diets, is a major contributing factor to mortality and morbidity of noncommunicable diseases due to higher BP and cardiovascular disease. In this review, we address this deficiency by examining and advocating for the incorporation of dietary fiber as a key lifestyle modification to manage elevated BP. We explain what dietary fiber is, review the existing literature that supports its use to lower BP and prevent cardiovascular disease, describe the mechanisms involved, propose evidence-based target levels of fiber intake, provide examples of how patients can achieve the recommended targets, and discuss outstanding questions in the field. According to the evidence reviewed here, the minimum daily dietary fiber for adults with hypertension should be >28 g/day for women and >38 g/day for men, with each extra 5 g/day estimated to reduce systolic BP by 2.8 mm Hg and diastolic BP by 2.1 mm Hg. This would support a healthy gut microbiota and the production of gut microbiota-derived metabolites called short-chain fatty acids that lower BP. Awareness about dietary fiber targets and how to achieve them will guide medical teams on better educating patients and empowering them to increase their fiber intake and, as a result, lower their BP and cardiovascular disease risk.


Subject(s)
Blood Pressure , Dietary Fiber , Hypertension , Humans , Blood Pressure/physiology , Blood Pressure/drug effects , Cardiovascular Diseases/prevention & control , Dietary Fiber/administration & dosage , Hypertension/diet therapy , Hypertension/prevention & control , Hypertension/physiopathology , Life Style , Male , Female , Adult
9.
Br J Pharmacol ; 179(5): 918-937, 2022 03.
Article in English | MEDLINE | ID: mdl-34363610

ABSTRACT

Elevated blood pressure (BP), or hypertension, is the main risk factor for cardiovascular disease. As a multifactorial and systemic disease that involves multiple organs and systems, hypertension remains a challenging disease to study. Models of hypertension are invaluable to support the discovery of the specific genetic, cellular and molecular mechanisms underlying essential hypertension, as well as to test new possible treatments to lower BP. Rodent models have proven to be an invaluable tool for advancing the field. In this review, we discuss the strengths and weaknesses of rodent models of hypertension through a systems approach. We highlight the ways how target organs and systems including the kidneys, vasculature, the sympathetic nervous system (SNS), immune system and the gut microbiota influence BP in each rodent model. We also discuss often overlooked hypertensive conditions such as pulmonary hypertension and hypertensive-pregnancy disorders, providing an important resource for researchers. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.


Subject(s)
Cardiovascular Diseases , Hypertension , Animals , Female , Inflammation , Pregnancy , Rodentia , Sympathetic Nervous System
10.
Trials ; 22(1): 496, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34315522

ABSTRACT

BACKGROUND: Hypertension is a prevalent chronic disease worldwide that remains poorly controlled. Recent studies support the concept that the gut microbiota is involved in the development of hypertension and that dietary fibre intake may act through the gut microbiota to lower blood pressure (BP). Resistant starch is a type of prebiotic fibre which is metabolised by commensal bacteria in the colon to produce short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate. Previous work in pre-clinical models provides strong evidence that both prebiotic fibre as well as SCFAs (i.e. postbiotics) can prevent the development of hypertension. The aim of this clinical trial is to determine if acetylated and butyrylated modified resistant starch can decrease BP of hypertensive individuals via the modulation of the gut microbiota and release of high levels of SCFAs. METHODS: This is a phase IIa double-blinded, randomised, cross-over, placebo controlled trial. Participants are randomly allocated to receive either a diet containing 40 g/day of the modified resistant starch or placebo (corn starch or regular flour) for 3 weeks on each diet, with a 3-week washout period between the two diets. BP is measured in the office, at home, and using a 24-h ambulatory device. Arterial stiffness is measured using carotid-to-femoral pulse wave velocity. Our primary endpoint is a reduction in ambulatory daytime systolic BP. Secondary endpoints include changes to circulating cytokines, immune markers, and modulation to the gut microbiome. DISCUSSION: The findings of this study will provide the first evidence for the use of a combination of pre- and postbiotics to lower BP in humans. The results are expected at the end of 2021. TRIAL REGISTRATION: Australia and New Zealand Clinical Trial Registry ACTRN12619000916145 . Registered on 1 July 2019.


Subject(s)
Pulse Wave Analysis , Australia , Blood Pressure , Double-Blind Method , Humans , New Zealand
11.
Hypertension ; 76(6): 1674-1687, 2020 12.
Article in English | MEDLINE | ID: mdl-33012206

ABSTRACT

There is increasing evidence of the influence of the gut microbiota on hypertension and its complications, such as chronic kidney disease, stroke, heart failure, and myocardial infarction. This is not surprising considering that the most common risk factors for hypertension, such as age, sex, medication, and diet, can also impact the gut microbiota. For example, sodium and fermentable fiber have been studied in relation to both hypertension and the gut microbiota. By combining second- and, now, third-generation sequencing with metabolomics approaches, metabolites, such as short-chain fatty acids and trimethylamine N-oxide, and their producers, have been identified and are now known to affect host physiology and the cardiovascular system. The receptors that bind these metabolites have also been explored with positive findings-examples include known short-chain fatty acid receptors, such as G-protein coupled receptors GPR41, GPR43, GPR109a, and OLF78 in mice. GPR41 and OLF78 have been shown to have inverse roles in blood pressure regulation, whereas GPR43 and GPR109A have to date been demonstrated to impact cardiac function. New treatment options in the form of prebiotics (eg, dietary fiber), probiotics (eg, Lactobacillus spp.), and postbiotics (eg, the short-chain fatty acids acetate, propionate, and butyrate) have all been demonstrated to be beneficial in lowering blood pressure in animal models, but the underlying mechanisms remain poorly understood and translation to hypertensive patients is still lacking. Here, we review the evidence for the role of the gut microbiota in hypertension, its risk factors, and cardiorenal complications and identify future directions for this exciting and fast-evolving field.


Subject(s)
Blood Pressure/physiology , Cardiovascular System/physiopathology , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/physiology , Hypertension/physiopathology , Receptors, G-Protein-Coupled/metabolism , Animals , Blood Pressure/drug effects , Cardiovascular System/metabolism , Humans , Hypertension/metabolism , Prebiotics/administration & dosage , Probiotics/administration & dosage
12.
Sci Rep ; 10(1): 17919, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087738

ABSTRACT

Increasing evidence supports a role for the gut microbiota in the development of cardiovascular diseases such as hypertension and its progression to heart failure (HF). Dietary fibre has emerged as a modulator of the gut microbiota, resulting in the release of gut metabolites called short-chain fatty acids (SCFAs), such as acetate. We have shown previously that fibre or acetate can protect against hypertension and heart disease in certain models. HF is also commonly caused by genetic disorders. In this study we investigated whether the intake of fibre or direct supplementation with acetate could attenuate the development of HF in a genetic model of dilated cardiomyopathy (DCM) due to overexpression of the cardiac specific mammalian sterile 20-like kinase (Mst1). Seven-week-old male mice DCM mice and littermate controls (wild-type, C57BL/6) were fed a control diet (with or without supplementation with 200 mM magnesium acetate in drinking water), or a high fibre diet for 7 weeks. We obtained hemodynamic, morphological, flow cytometric and gene expression data. The gut microbiome was characterised by 16S rRNA amplicon sequencing. Fibre intake was associated with a significant shift in the gut microbiome irrespective of mouse genotype. However, neither fibre or supplementation with acetate were able to attenuate cardiac remodelling or cardiomyocyte apoptosis in Mst1 mice. Furthermore, fibre and acetate did not improve echocardiographic or hemodynamic parameters in DCM mice. These data suggest that although fibre modulates the gut microbiome, neither fibre nor acetate can override a strong genetic contribution to the development of heart failure in the Mst1 model.


Subject(s)
Dietary Fiber/administration & dosage , Dietary Fiber/pharmacology , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Genetic Predisposition to Disease , Heart Failure/genetics , Heart Failure/microbiology , Prebiotics/administration & dosage , Acetates/administration & dosage , Acetates/metabolism , Animals , Apoptosis , Disease Models, Animal , Fatty Acids, Volatile/metabolism , Heart Failure/etiology , Heart Failure/prevention & control , Male , Mice, Inbred C57BL , Myocytes, Cardiac , Protein Serine-Threonine Kinases/metabolism , Ventricular Remodeling
13.
Cardiovasc Res ; 115(9): 1435-1447, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30951169

ABSTRACT

Over the past decade, the immune system has emerged as an important component in the aetiology of hypertension. There has been a blooming interest in the contribution of the gut microbiota, the microbes that inhabit our small and large intestine, to blood pressure (BP) regulation. The gastrointestinal tract houses the largest number of immune cells in our body, thus, it is no surprise that its microbiota plays an important functional role in the appropriate development of the immune system through a co-ordinated sequence of events leading to immune tolerance of commensal bacteria. Importantly, recent evidence supports that the gut microbiota can protect or promote the development of experimental hypertension and is likely to have a role in human hypertension. One of the major modulators of the gut microbiota is diet: diets that emphasize high intake of fermentable fibre, such as the Mediterranean diet and the Dietary Approaches to Stop Hypertension, promote expansion of protective microbes that release gut metabolites such as short-chain fatty acids, which are immune-, BP-, and cardio-protective, likely acting through G-coupled protein receptors. In contrast, diets lacking fibre or high in salt and fat, such as the Western diet, reduce prevalence of commensal microbial species and support a pathogenic and pro-inflammatory environment, including the release of the pro-atherosclerotic trimethylamine N-oxide. Here, we review the current understanding of the gut microbiota-driven immune dysfunction in both experimental and clinical hypertension, and how these changes may be addressed through dietary interventions.


Subject(s)
Bacteria/immunology , Blood Pressure , Cardiovascular System/immunology , Diet , Energy Metabolism/immunology , Gastrointestinal Microbiome/immunology , Hypertension/immunology , Immune System/immunology , Immunomodulation , Inflammation/immunology , Animals , Bacteria/metabolism , Cardiovascular System/metabolism , Cardiovascular System/physiopathology , Diet/adverse effects , Humans , Hypertension/metabolism , Hypertension/microbiology , Hypertension/physiopathology , Immune System/metabolism , Immune System/physiopathology , Inflammation/metabolism , Inflammation/microbiology , Inflammation/physiopathology , Signal Transduction
14.
Hypertension ; 74(6): 1279-1293, 2019 12.
Article in English | MEDLINE | ID: mdl-31679421

ABSTRACT

Hypertension is a complex and modifiable condition in which environmental factors contribute to both onset and progression. Recent evidence has accumulated for roles of diet and the gut microbiome as environmental factors in blood pressure regulation. However, this is complex because gut microbiomes are a unique feature of each individual reflecting that individual's developmental and environmental history creating caveats for both experimental models and human studies. Here, we describe guidelines for conducting gut microbiome studies in experimental and clinical hypertension. We provide a complete guide for authors on proper design, analyses, and reporting of gut microbiota/microbiome and metabolite studies and checklists that can be used by reviewers and editors to support robust reporting and interpretation. We discuss factors that modulate the gut microbiota in animal (eg, cohort, controls, diet, developmental age, housing, sex, and models used) and human studies (eg, blood pressure measurement and medication, body mass index, demographic characteristics including age, cultural identification, living structure, sex and socioeconomic environment, and exclusion criteria). We also provide best practice advice on sampling, storage of fecal/cecal samples, DNA extraction, sequencing methods (including metagenomics and 16S rRNA), and computational analyses. Finally, we discuss the measurement of short-chain fatty acids, metabolites produced by the gut microbiota, and interpretation of data. These guidelines should support better transparency, reproducibility, and translation of findings in the field of gut microbiota/microbiome in hypertension and cardiovascular disease.


Subject(s)
Disease Progression , Essential Hypertension/physiopathology , Gastrointestinal Microbiome/genetics , Practice Guidelines as Topic , Animals , Blood Pressure Determination/methods , Diet , Disease Models, Animal , Essential Hypertension/drug therapy , Essential Hypertension/epidemiology , Evidence-Based Medicine , Female , Gastrointestinal Microbiome/immunology , Humans , Incidence , Male , Metagenomics , Mice , Prognosis , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL