ABSTRACT
Legionella pneumophila is the cause of Legionnaires' disease, a life-threatening pneumonia that occurs after inhalation of aerosolized water containing the bacteria. Legionella growth occurs in stagnant, warm-to-hot water (77°F-113°F) that is inadequately disinfected. Piped hot spring water in Hot Springs National Park, Arkansas, USA, has naturally high temperatures (>135°F) that prevent Legionella growth, and Legionnaires' disease has not previously been associated with the park or other hot springs in the United States. During 2018-2019, Legionnaires' disease occurred in 5 persons after they visited the park; 3 of these persons were potentially exposed in spa facilities that used untreated hot spring water. Environmental testing revealed Legionella bacteria in piped spring water, including 134°F stagnant pipe water. These findings underscore the importance of water management programs to reduce Legionella growth in plumbing through control activities such as maintaining hot water temperatures, reducing stored water age, and ensuring adequate water flow.
Subject(s)
Hot Springs , Legionella pneumophila , Legionnaires' Disease , Arkansas , Humans , Legionnaires' Disease/epidemiology , Legionnaires' Disease/prevention & control , Parks, Recreational , United States/epidemiology , Water , Water Microbiology , Water SupplyABSTRACT
To assess transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a detention facility experiencing a coronavirus disease outbreak and evaluate testing strategies, we conducted a prospective cohort investigation in a facility in Louisiana, USA. We conducted SARS-CoV-2 testing for detained persons in 6 quarantined dormitories at various time points. Of 143 persons, 53 were positive at the initial test, and an additional 58 persons were positive at later time points (cumulative incidence 78%). In 1 dormitory, all 45 detained persons initially were negative; 18 days later, 40 (89%) were positive. Among persons who were SARS-CoV-2 positive, 47% (52/111) were asymptomatic at the time of specimen collection; 14 had replication-competent virus isolated. Serial SARS-CoV-2 testing might help interrupt transmission through medical isolation and quarantine. Testing in correctional and detention facilities will be most effective when initiated early in an outbreak, inclusive of all exposed persons, and paired with infection prevention and control.
Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/epidemiology , Disease Outbreaks/statistics & numerical data , Disease Transmission, Infectious/statistics & numerical data , SARS-CoV-2/isolation & purification , Adult , COVID-19/diagnosis , COVID-19/transmission , Female , Humans , Incidence , Louisiana/epidemiology , Male , Prisons , Prospective StudiesABSTRACT
Objectives. To assess SARS-CoV-2 transmission within a correctional facility and recommend mitigation strategies.Methods. From April 29 to May 15, 2020, we established the point prevalence of COVID-19 among incarcerated persons and staff within a correctional facility in Arkansas. Participants provided respiratory specimens for SARS-CoV-2 testing and completed questionnaires on symptoms and factors associated with transmission.Results. Of 1647 incarcerated persons and 128 staff tested, 30.5% of incarcerated persons (range by housing unit = 0.0%-58.2%) and 2.3% of staff tested positive for SARS-CoV-2. Among those who tested positive and responded to symptom questions (431 incarcerated persons, 3 staff), 81.2% and 33.3% were asymptomatic, respectively. Most incarcerated persons (58.0%) reported wearing cloth face coverings 8 hours or less per day, and 63.3% reported close contact with someone other than their bunkmate.Conclusions. If testing remained limited to symptomatic individuals, fewer cases would have been detected or detection would have been delayed, allowing transmission to continue. Rapid implementation of mass testing and strict enforcement of infection prevention and control measures may be needed to mitigate spread of SARS-CoV-2 in this setting.
Subject(s)
COVID-19 Testing , COVID-19 , Correctional Facilities/statistics & numerical data , Adult , Aged , Aged, 80 and over , Arkansas/epidemiology , COVID-19/epidemiology , COVID-19/transmission , Housing/statistics & numerical data , Humans , Male , Middle Aged , Prevalence , Prisoners/statistics & numerical data , Surveys and QuestionnairesABSTRACT
Preventing transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), in colleges and universities requires mitigation strategies that address on- and off-campus congregate living settings as well as extracurricular activities and other social gatherings (1-4). At the start of the academic year, sorority and fraternity organizations host a series of recruitment activities known as rush week; rush week culminates with bid day, when selections are announced. At university A in Arkansas, sorority rush week (for women) was held during August 17-22, 2020, and consisted of on- and off-campus social gatherings, including an outdoor bid day event on August 22. Fraternity rush week (for men) occurred during August 27-31, with bid day scheduled for September 5. During August 22-September 5, university A-associated COVID-19 cases were reported to the Arkansas Department of Health (ADH). A total of 965 confirmed and probable COVID-19 cases associated with university A were identified, with symptom onset occurring during August 20-September 5, 2020; 31% of the patients with these cases reported involvement in any fraternity or sorority activity. Network analysis identified 54 gatherings among all linkages of cases to places of residence and cases to events, 49 (91%) were linked by participation in fraternity and sorority activities accounting for 42 (72%) links among gatherings. On September 4, university A banned gatherings of ≥10 persons, and fraternity bid day was held virtually. The rapid increase in COVID-19 cases was likely facilitated by on- and off-campus congregate living settings and activities, and health departments should work together with student organizations and university leadership to ensure compliance with mitigation measures.
Subject(s)
COVID-19/epidemiology , COVID-19/transmission , College Fraternities and Sororities/organization & administration , Community-Acquired Infections/epidemiology , Adolescent , Adult , Aged , Arkansas/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , Community-Acquired Infections/prevention & control , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Universities , Young AdultABSTRACT
Transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), by asymptomatic and presymptomatic persons poses important challenges to controlling spread of the disease, particularly in congregate settings such as correctional and detention facilities (1). On March 29, 2020, a staff member in a correctional and detention facility in Louisiana developed symptoms and later had a positive test result for SARS-CoV-2. During April 2-May 7, two additional cases were detected among staff members, and 36 cases were detected among incarcerated and detained persons at the facility; these persons were removed from dormitories and isolated, and the five dormitories that they had resided in before diagnosis were quarantined. On May 7, CDC and the Louisiana Department of Health initiated an investigation to assess the prevalence of SARS-CoV-2 infection among incarcerated and detained persons residing in quarantined dormitories. Goals of this investigation included evaluating COVID-19 symptoms in this setting and assessing the effectiveness of serial testing to identify additional persons with SARS-CoV-2 infection as part of efforts to mitigate transmission. During May 7-21, testing of 98 incarcerated and detained persons residing in the five quarantined dormitories (A-E) identified an additional 71 cases of SARS-CoV-2 infection; 32 (45%) were among persons who reported no symptoms at the time of testing, including three who were presymptomatic. Eighteen cases (25%) were identified in persons who had received negative test results during previous testing rounds. Serial testing of contacts from shared living quarters identified persons with SARS-CoV-2 infection who would not have been detected by symptom screening alone or by testing at a single time point. Prompt identification and isolation of infected persons is important to reduce further transmission in congregate settings such as correctional and detention facilities and the communities to which persons return when released.
Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Prisoners/statistics & numerical data , Prisons , Adult , COVID-19 , COVID-19 Testing , Clinical Laboratory Services , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Female , Humans , Louisiana/epidemiology , Male , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmissionABSTRACT
By June 2020, Marshallese and Hispanic or Latino (Hispanic) persons in Benton and Washington counties of Arkansas had received a disproportionately high number of diagnoses of coronavirus disease 2019 (COVID-19). Despite representing approximately 19% of these counties' populations (1), Marshallese and Hispanic persons accounted for 64% of COVID-19 cases and 57% of COVID-19-associated deaths. Analyses of surveillance data, focus group discussions, and key-informant interviews were conducted to identify challenges and propose strategies for interrupting transmission of SARS-CoV-2, the virus that causes COVID-19. Challenges included limited native-language health messaging, high household occupancy, high employment rate in the poultry processing industry, mistrust of the medical system, and changing COVID-19 guidance. Reducing the COVID-19 incidence among communities that suffer disproportionately from COVID-19 requires strengthening the coordination of public health, health care, and community stakeholders to provide culturally and linguistically tailored public health education, community-based prevention activities, case management, care navigation, and service linkage.
Subject(s)
COVID-19/ethnology , Disease Outbreaks , Hispanic or Latino/statistics & numerical data , Native Hawaiian or Other Pacific Islander/statistics & numerical data , Adolescent , Adult , Aged , Arkansas/epidemiology , Clinical Laboratory Techniques , Female , Health Status Disparities , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Young AdultABSTRACT
An estimated 2.1 million U.S. adults are housed within approximately 5,000 correctional and detention facilities on any given day (1). Many facilities face significant challenges in controlling the spread of highly infectious pathogens such as SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). Such challenges include crowded dormitories, shared lavatories, limited medical and isolation resources, daily entry and exit of staff members and visitors, continual introduction of newly incarcerated or detained persons, and transport of incarcerated or detained persons in multiperson vehicles for court-related, medical, or security reasons (2,3). During April 22-28, 2020, aggregate data on COVID-19 cases were reported to CDC by 37 of 54 state and territorial health department jurisdictions. Thirty-two (86%) jurisdictions reported at least one laboratory-confirmed case from a total of 420 correctional and detention facilities. Among these facilities, COVID-19 was diagnosed in 4,893 incarcerated or detained persons and 2,778 facility staff members, resulting in 88 deaths in incarcerated or detained persons and 15 deaths among staff members. Prompt identification of COVID-19 cases and consistent application of prevention measures, such as symptom screening and quarantine, are critical to protecting incarcerated and detained persons and staff members.
Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Prisons , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/prevention & control , Humans , Pandemics/prevention & control , Pneumonia, Viral/mortality , Pneumonia, Viral/prevention & control , Prevalence , SARS-CoV-2 , United States/epidemiologyABSTRACT
During August-December 2019, 23 persons who received a diagnosis of e-cigarette, or vaping, product use-associated lung injury (EVALI) were reported to the Arkansas Department of Health (ADH); none died. Among Arkansas EVALI patients, most were aged <25 years and white; two-thirds were male. Approximately half of Arkansas EVALI patients were admitted to intensive care units. Among 18 patients who were interviewed, 61% reported using both nicotine and tetrahydrocannabinol in an e-cigarette, or vaping, device during the 90 days preceding illness onset. Clinicians should remain vigilant for EVALI and continue to report cases to ADH.
ABSTRACT
We report 5 cases of coccidioidomycosis in animals that were acquired within Washington, USA, and provide further evidence for the environmental endemicity of Coccidioides immitis within the state. Veterinarians should consider coccidioidomycosis in animals with compatible clinical signs that reside in, or have traveled to, south central Washington.
Subject(s)
Coccidioides/physiology , Coccidioidomycosis/veterinary , Dog Diseases/transmission , Horse Diseases/transmission , Animals , Coccidioides/isolation & purification , Coccidioidomycosis/diagnosis , Coccidioidomycosis/microbiology , Coccidioidomycosis/transmission , Dog Diseases/diagnosis , Dog Diseases/microbiology , Dogs , Female , Horse Diseases/diagnosis , Horse Diseases/microbiology , Horses , Humans , Male , WashingtonABSTRACT
The sensitivity of the BinaxNOW coronavirus disease 2019 (COVID-19) Ag Card test (BinaxNOW) was 51.6% among asymptomatic healthcare employees relative to real-time reverse transcriptase polymerase chain reaction (rRT-PCR). The odds of a positive BinaxNOW test decreased as cycle threshold value increased. BinaxNOW could facilitate rapid detection and isolation of asymptomatically infected persons in some settings while rRT-PCR results are pending.
Subject(s)
Antigens, Viral/analysis , COVID-19 Nucleic Acid Testing , COVID-19 Testing/methods , COVID-19 , Asymptomatic Infections , COVID-19/diagnosis , Health Personnel , Humans , RNA-Directed DNA Polymerase , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and SpecificityABSTRACT
Background: Outbreaks of healthcare-associated mucormycosis (HCM), a life-threatening fungal infection, have been attributed to multiple sources, including contaminated healthcare linens. In 2020, staff at Hospital A in Arkansas alerted public health officials of a potential HCM outbreak. Methods: We collected data on patients at Hospital A who had invasive mucormycosis during January 2017-June 2021 and calculated annual incidence of HCM (defined as mucormycosis diagnosed within ≥7 days after hospital admission). We performed targeted environmental assessments, including linen sampling at the hospital, to identify potential sources of infection. Results: During the outbreak period (June 2019-June 2021), 16 patients had HCM; clinical features were similar between HCM patients and non-HCM patients. Hospital-wide HCM incidence (per 100 000 patient-days) increased from 0 in 2018 to 3 in 2019 and 6 in 2020. For the 16 HCM patients, the most common underlying medical conditions were hematologic malignancy (56%) and recent traumatic injury (38%); 38% of HCM patients died in-hospital. Healthcare-associated mucormycosis cases were not epidemiologically linked by common procedures, products, units, or rooms. At Hospital A and its contracted offsite laundry provider, suboptimal handling of laundered linens and inadequate environmental controls to prevent mucormycete contamination were observed. We detected Rhizopus on 9 (9%) of 98 linens sampled at the hospital, including on linens that had just arrived from the laundry facility. Conclusions: We describe the largest, single-center, HCM outbreak reported to date. Our findings underscore the importance of hospital-based monitoring for HCM and increased attention to the safe handling of laundered linens.
ABSTRACT
BACKGROUND: To estimate the infectious period of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in older adults with underlying conditions, we assessed duration of coronavirus disease 2019 (COVID-19) symptoms, reverse-transcription polymerase chain reaction (RT-PCR) positivity, and culture positivity among nursing home residents. METHODS: We enrolled residents within 15 days of their first positive SARS-CoV-2 test (diagnosis) at an Arkansas facility from July 7 to 15, 2020 and instead them for 42 days. Every 3 days for 21 days and then weekly, we assessed COVID-19 symptoms, collected specimens (oropharyngeal, anterior nares, and saliva), and reviewed medical charts. Blood for serology was collected on days 0, 6, 12, 21, and 42. Infectivity was defined by positive culture. Duration of culture positivity was compared with duration of COVID-19 symptoms and RT-PCR positivity. Data were summarized using measures of central tendency, frequencies, and proportions. RESULTS: We enrolled 17 of 39 (44%) eligible residents. Median participant age was 82 years (range, 58-97 years). All had ≥3 underlying conditions. Median duration of RT-PCR positivity was 22 days (interquartile range [IQR], 8-31 days) from diagnosis; median duration of symptoms was 42 days (IQR, 28-49 days). Of 9 (53%) participants with any culture-positive specimens, 1 (11%) severely immunocompromised participant remained culture-positive 19 days from diagnosis; 8 of 9 (89%) were culture-positive ≤8 days from diagnosis. Seroconversion occurred in 12 of 12 (100%) surviving participants with ≥1 blood specimen; all participants were culture-negative before seroconversion. CONCLUSIONS: Duration of infectivity was considerably shorter than duration of symptoms and RT-PCR positivity. Severe immunocompromise may prolong SARS-CoV-2 infectivity. Seroconversion indicated noninfectivity in this cohort.
ABSTRACT
Coccidioides immitis is an emerging fungal pathogen in Washington State (WA). While the geographical boundaries of C. immitis in WA have not been well characterized, human infections have resulted from exposure in the south-central region of the state. Since 2010, only one dog has been identified as a probable locally acquired animal case, despite pilot canine serological surveys from south-central WA revealing a 9.8% seroprevalence. On the suspicion that clinical animal cases may be underdiagnosed and/or underreported, we assessed WA veterinarians' knowledge, attitudes and practices regarding coccidioidomycosis. All veterinarians with active licenses in WA were invited to complete a self-administered, web-based survey from November 2018 to January 2019. Four hundred and twenty-five of 2,211 (19.2%) veterinarians returned the survey and were eligible for inclusion in the final analysis. Nearly, all respondents (98.8%) had heard of coccidioidomycosis, but only 31.5% and 25.6% knew that locally acquired animal and human cases, respectively, had been reported in WA. Only half (52.6%) of participants knew that the disease was reportable. Fewer than 20% of respondents reported confidence that their knowledge of coccidioidomycosis was up to date, and 76.9% "never" or "rarely" considered the risk of disease in their patients. A statistically significant predictor of a high knowledge score (≥70%), however, included practicing in endemic counties where the Washington State Department of Health had previously delivered outreach and education services. While the results suggest some success with these activities, it is clear that information on the emergence of coccidioidomycosis is not adequately reaching veterinary practitioners in WA. The data support that more frequent CE opportunities, and dissemination of public health communications through veterinary-specific modalities, would help fill the knowledge gap. In turn, improved diagnosis and reporting of animal cases would assist in our overall understanding the epidemiology of coccidioidomycosis in WA.
Subject(s)
Coccidioides , Coccidioidomycosis/veterinary , Communicable Diseases, Emerging/veterinary , Health Knowledge, Attitudes, Practice , Veterinarians , Animals , Coccidioidomycosis/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Data Collection , Dog Diseases/epidemiology , Dogs , Humans , Surveys and Questionnaires , Washington/epidemiologyABSTRACT
In Borrelia hermsii, antigenic variation occurs as a result of a nonreciprocal gene conversion event that places one of ~60 silent variable major protein genes downstream of a single, transcriptionally active promoter. The upstream homology sequence (UHS) and downstream homology sequence (DHS) are two putative cis-acting DNA elements that have been predicted to serve as crossover points for homologous recombination. In this report, a targeted deletion/in cis complementation technique was used to directly evaluate the role for these elements in antigenic switching. The results demonstrate that deletion of the expression site results in an inability of the pathogen to relapse in immunocompetent mice, and that the utilized technique was successful in producing complemented mutants that are capable of antigenic switching. Additional complemented clones with mutations in the UHS and DHS of the expressed locus were then generated and evaluated for their ability to relapse in immunocompetent mice. Mutation of the UHS and inverted repeat sequence within the DHS rendered these mutants incapable of relapsing. Overall, the results establish the requirement of the inverted repeat of the DHS for antigenic switching, and support the importance of the UHS for B. hermsii persistence in the mammalian host.
Subject(s)
Antigenic Variation , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Borrelia/genetics , Borrelia/immunology , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Animals , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Disease Models, Animal , Gene Deletion , Genetic Complementation Test , Mice , Relapsing Fever/microbiologyABSTRACT
DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence.