Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Cell ; 187(9): 2143-2157.e15, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670072

ABSTRACT

A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.


Subject(s)
Neurons , Animals , Mice , Rats , Neurons/metabolism , Neurons/cytology , Neurons/physiology , Blastocyst/metabolism , Blastocyst/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Brain/cytology , Brain/physiology , Female , Hippocampus/cytology , Hippocampus/physiology , Species Specificity , Mice, Inbred C57BL , Male
2.
Cell ; 184(18): 4772-4783.e15, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34388390

ABSTRACT

Throughout development and aging, human cells accumulate mutations resulting in genomic mosaicism and genetic diversity at the cellular level. Mosaic mutations present in the gonads can affect both the individual and the offspring and subsequent generations. Here, we explore patterns and temporal stability of clonal mosaic mutations in male gonads by sequencing ejaculated sperm. Through 300× whole-genome sequencing of blood and sperm from healthy men, we find each ejaculate carries on average 33.3 ± 12.1 (mean ± SD) clonal mosaic variants, nearly all of which are detected in serial sampling, with the majority absent from sampled somal tissues. Their temporal stability and mutational signature suggest origins during embryonic development from a largely immutable stem cell niche. Clonal mosaicism likely contributes a transmissible, predicted pathogenic exonic variant for 1 in 15 men, representing a life-long threat of transmission for these individuals and a significant burden on human population health.


Subject(s)
Growth and Development , Mosaicism , Spermatozoa/metabolism , Adolescent , Aging/blood , Alleles , Clone Cells , Cohort Studies , Humans , Male , Models, Biological , Mutation/genetics , Risk Factors , Time Factors , Young Adult
3.
Genet Med ; 26(1): 101006, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37869996

ABSTRACT

PURPOSE: Copy-number variants (CNVs) and other non-single nucleotide variant/indel variant types contribute an important proportion of diagnoses in individuals with suspected genetic disease. This study describes the range of such variants detected by genome sequencing (GS). METHODS: For a pediatric cohort of 1032 participants undergoing clinical GS, we characterize the CNVs and other non-single nucleotide variant/indel variant types that were reported, including aneuploidies, mobile element insertions, and uniparental disomies, and we describe the bioinformatic pipeline used to detect these variants. RESULTS: Together, these genetic alterations accounted for 15.8% of reported variants. Notably, 67.9% of these were deletions, 32.9% of which overlapped a single gene, and many deletions were reported together with a second variant in the same gene in cases of recessive disease. A retrospective medical record review in a subset of this cohort revealed that up to 6 additional genetic tests were ordered in 68% (26/38) of cases, some of which failed to report the CNVs/rare variants reported on GS. CONCLUSION: GS detected a broad range of reported variant types, including CNVs ranging in size from 1 Kb to 46 Mb.


Subject(s)
Genome , Genomics , Humans , Child , Retrospective Studies , Chromosome Mapping , Nucleotides , DNA Copy Number Variations/genetics , Polymorphism, Single Nucleotide/genetics
4.
Am J Hum Genet ; 106(4): 484-495, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32220290

ABSTRACT

Glycosylphosphatidylinositol (GPI)-anchored proteins are critical for embryogenesis, neurogenesis, and cell signaling. Variants in several genes participating in GPI biosynthesis and processing lead to decreased cell surface presence of GPI-anchored proteins (GPI-APs) and cause inherited GPI deficiency disorders (IGDs). In this report, we describe 12 individuals from nine unrelated families with 10 different bi-allelic PIGK variants. PIGK encodes a component of the GPI transamidase complex, which attaches the GPI anchor to proteins. Clinical features found in most individuals include global developmental delay and/or intellectual disability, hypotonia, cerebellar ataxia, cerebellar atrophy, and facial dysmorphisms. The majority of the individuals have epilepsy. Two individuals have slightly decreased levels of serum alkaline phosphatase, while eight do not. Flow cytometric analysis of blood and fibroblasts from affected individuals showed decreased cell surface presence of GPI-APs. The overexpression of wild-type (WT) PIGK in fibroblasts rescued the levels of cell surface GPI-APs. In a knockout cell line, transfection with WT PIGK also rescued the GPI-AP levels, but transfection with the two tested mutant variants did not. Our study not only expands the clinical and known genetic spectrum of IGDs, but it also expands the genetic differential diagnosis for cerebellar atrophy. Given the fact that cerebellar atrophy is seen in other IGDs, flow cytometry for GPI-APs should be considered in the work-ups of individuals presenting this feature.


Subject(s)
Acyltransferases/genetics , Cell Adhesion Molecules/genetics , Cerebellar Diseases/genetics , Epilepsy/genetics , Genetic Variation/genetics , Muscle Hypotonia/genetics , Neurodevelopmental Disorders/genetics , Abnormalities, Multiple/genetics , Alleles , Female , Humans , Intellectual Disability/genetics , Male , Nervous System Malformations/genetics , Pedigree , Syndrome
5.
Am J Hum Genet ; 105(4): 844-853, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31585108

ABSTRACT

Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.


Subject(s)
Alleles , Classical Lissencephalies and Subcortical Band Heterotopias/genetics , Cytoskeletal Proteins/genetics , Developmental Disabilities/genetics , Lissencephaly/genetics , Female , Humans , Male , Pedigree
6.
Am J Hum Genet ; 103(2): 296-304, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30032983

ABSTRACT

The dynamic shape of the endoplasmic reticulum (ER) is a reflection of its wide variety of critical cell biological functions. Consequently, perturbation of ER-shaping proteins can cause a range of human phenotypes. Here, we describe three affected children (from two consanguineous families) who carry homozygous loss-of-function mutations in LNPK (previously known as KIAA1715); this gene encodes lunapark, which is proposed to serve as a curvature-stabilizing protein within tubular three-way junctions of the ER. All individuals presented with severe psychomotor delay, intellectual disability, hypotonia, epilepsy, and corpus callosum hypoplasia, and two of three showed mild cerebellar hypoplasia and atrophy. Consistent with a proposed role in neurodevelopmental disease, LNPK was expressed during brain development in humans and mice and was present in neurite-like processes in differentiating human neural progenitor cells. Affected cells showed the absence of full-length lunapark, aberrant ER structures, and increased luminal mass density. Together, our results implicate the ER junction stabilizer lunapark in establishing the corpus callosum.


Subject(s)
Endoplasmic Reticulum/genetics , Homeodomain Proteins/genetics , Mutation/genetics , Adolescent , Animals , Atrophy/genetics , Cell Differentiation/genetics , Child , Corpus Callosum/pathology , Female , Humans , Infant , Intellectual Disability/genetics , Male , Membrane Proteins , Mice , Muscle Hypotonia/genetics , Phenotype , Psychomotor Disorders/genetics , Stem Cells/pathology
7.
Am J Hum Genet ; 100(4): 676-688, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28343629

ABSTRACT

Ubiquitination is a posttranslational modification that regulates many cellular processes including protein degradation, intracellular trafficking, cell signaling, and protein-protein interactions. Deubiquitinating enzymes (DUBs), which reverse the process of ubiquitination, are important regulators of the ubiquitin system. OTUD6B encodes a member of the ovarian tumor domain (OTU)-containing subfamily of deubiquitinating enzymes. Herein, we report biallelic pathogenic variants in OTUD6B in 12 individuals from 6 independent families with an intellectual disability syndrome associated with seizures and dysmorphic features. In subjects with predicted loss-of-function alleles, additional features include global developmental delay, microcephaly, absent speech, hypotonia, growth retardation with prenatal onset, feeding difficulties, structural brain abnormalities, congenital malformations including congenital heart disease, and musculoskeletal features. Homozygous Otud6b knockout mice were subviable, smaller in size, and had congenital heart defects, consistent with the severity of loss-of-function variants in humans. Analysis of peripheral blood mononuclear cells from an affected subject showed reduced incorporation of 19S subunits into 26S proteasomes, decreased chymotrypsin-like activity, and accumulation of ubiquitin-protein conjugates. Our findings suggest a role for OTUD6B in proteasome function, establish that defective OTUD6B function underlies a multisystemic human disorder, and provide additional evidence for the emerging relationship between the ubiquitin system and human disease.


Subject(s)
Abnormalities, Multiple/genetics , Endopeptidases/genetics , Intellectual Disability/genetics , Adolescent , Animals , Child , Child, Preschool , Disease Models, Animal , Female , Gene Deletion , Humans , Male , Mice , Pedigree , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Seizures/genetics
8.
Genet Med ; 22(6): 1040-1050, 2020 06.
Article in English | MEDLINE | ID: mdl-32103185

ABSTRACT

PURPOSE: The exocyst complex is a conserved protein complex that mediates fusion of intracellular vesicles to the plasma membrane and is implicated in processes including cell polarity, cell migration, ciliogenesis, cytokinesis, autophagy, and fusion of secretory vesicles. The essential role of these genes in human genetic disorders, however, is unknown. METHODS: We performed homozygosity mapping and exome sequencing of consanguineous families with recessively inherited brain development disorders. We modeled an EXOC7 splice variant in vitro and examined EXOC7 messenger RNA (mRNA) expression in developing mouse and human cortex. We modeled exoc7 loss-of-function in a zebrafish knockout. RESULTS: We report variants in exocyst complex members, EXOC7 and EXOC8, in a novel disorder of cerebral cortex development. In EXOC7, we identified four independent partial loss-of-function (LOF) variants in a recessively inherited disorder characterized by brain atrophy, seizures, and developmental delay, and in severe cases, microcephaly and infantile death. In EXOC8, we found a homozygous truncating variant in a family with a similar clinical disorder. We modeled exoc7 deficiency in zebrafish and found the absence of exoc7 causes microcephaly. CONCLUSION: Our results highlight the essential role of the exocyst pathway in normal cortical development and how its perturbation causes complex brain disorders.


Subject(s)
Brain Diseases , Microcephaly , Animals , Cell Proliferation/genetics , Homozygote , Humans , Mice , Microcephaly/genetics , Zebrafish/genetics
9.
J Med Genet ; 56(5): 332-339, 2019 05.
Article in English | MEDLINE | ID: mdl-30487245

ABSTRACT

BACKGROUND: Putative nucleotidyltransferase MAB21L1 is a member of an evolutionarily well-conserved family of the male abnormal 21 (MAB21)-like proteins. Little is known about the biochemical function of the protein; however, prior studies have shown essential roles for several aspects of embryonic development including the eye, midbrain, neural tube and reproductive organs. OBJECTIVE: A homozygous truncating variant in MAB21L1 has recently been described in a male affected by intellectual disability, scrotal agenesis, ophthalmological anomalies, cerebellar hypoplasia and facial dysmorphism. We employed a combination of exome sequencing and homozygosity mapping to identify the underlying genetic cause in subjects with similar phenotypic features descending from five unrelated consanguineous families. RESULTS: We identified four homozygous MAB21L1 loss of function variants (p.Glu281fs*20, p.Arg287Glufs*14 p.Tyr280* and p.Ser93Serfs*48) and one missense variant (p.Gln233Pro) in 10 affected individuals from 5 consanguineous families with a distinctive autosomal recessive neurodevelopmental syndrome. Cardinal features of this syndrome include a characteristic facial gestalt, corneal dystrophy, hairy nipples, underdeveloped labioscrotal folds and scrotum/scrotal agenesis as well as cerebellar hypoplasia with ataxia and variable microcephaly. CONCLUSION: This report defines an ultrarare but clinically recognisable Cerebello-Oculo-Facio-Genital syndrome associated with recessive MAB21L1 variants. Additionally, our findings further support the critical role of MAB21L1 in cerebellum, lens, genitalia and as craniofacial morphogenesis.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Homeodomain Proteins/genetics , Loss of Function Mutation , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype , Brain/abnormalities , Brain/diagnostic imaging , Child , Child, Preschool , Consanguinity , Facies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Homeodomain Proteins/chemistry , Homozygote , Humans , Infant , Magnetic Resonance Imaging , Male , Models, Molecular , Pedigree , Polymorphism, Single Nucleotide , Protein Conformation , Syndrome , Exome Sequencing
10.
Hum Mol Genet ; 26(2): 258-269, 2017 01 15.
Article in English | MEDLINE | ID: mdl-28013290

ABSTRACT

The integrity and dynamic properties of the microtubule cytoskeleton are indispensable for the development of the mammalian brain. Consequently, mutations in the genes that encode the structural component (the α/ß-tubulin heterodimer) can give rise to severe, sporadic neurodevelopmental disorders. These are commonly referred to as the tubulinopathies. Here we report the addition of recessive quadrupedalism, also known as Uner Tan syndrome (UTS), to the growing list of diseases caused by tubulin variants. Analysis of a consanguineous UTS family identified a biallelic TUBB2B mutation, resulting in a p.R390Q amino acid substitution. In addition to the identifying quadrupedal locomotion, all three patients showed severe cerebellar hypoplasia. None, however, displayed the basal ganglia malformations typically associated with TUBB2B mutations. Functional analysis of the R390Q substitution revealed that it did not affect the ability of ß-tubulin to fold or become assembled into the α/ß-heterodimer, nor did it influence the incorporation of mutant-containing heterodimers into microtubule polymers. The 390Q mutation in S. cerevisiae TUB2 did not affect growth under basal conditions, but did result in increased sensitivity to microtubule-depolymerizing drugs, indicative of a mild impact of this mutation on microtubule function. The TUBB2B mutation described here represents an unusual recessive mode of inheritance for missense-mediated tubulinopathies and reinforces the sensitivity of the developing cerebellum to microtubule defects.


Subject(s)
Cerebellum/abnormalities , Malformations of Cortical Development/genetics , Microtubules/genetics , Nervous System Malformations/genetics , Tubulin/genetics , Adult , Amino Acid Substitution/genetics , Basal Ganglia/pathology , Brain/growth & development , Brain/pathology , Cerebellum/physiopathology , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , Female , Homozygote , Humans , Male , Malformations of Cortical Development/physiopathology , Microtubules/pathology , Mutation , Nervous System Malformations/physiopathology , Phenotype , Saccharomyces cerevisiae/genetics
11.
Am J Hum Genet ; 99(1): 228-35, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27392077

ABSTRACT

The tRNA splicing endonuclease is a highly evolutionarily conserved protein complex, involved in the cleavage of intron-containing tRNAs. In human it consists of the catalytic subunits TSEN2 and TSEN34, as well as the non-catalytic TSEN54 and TSEN15. Recessive mutations in the corresponding genes of the first three are known to cause pontocerebellar hypoplasia (PCH) types 2A-C, 4, and 5. Here, we report three homozygous TSEN15 variants that cause a milder version of PCH2. The affected individuals showed progressive microcephaly, delayed developmental milestones, intellectual disability, and, in two out of four cases, epilepsy. None, however, displayed the central visual failure seen in PCH case subjects where other subunits of the TSEN are mutated, and only one was affected by the extensive motor defects that are typical in other forms of PCH2. The three amino acid substitutions impacted the protein level of TSEN15 and the stoichiometry of the interacting subunits in different ways, but all resulted in an almost complete loss of in vitro tRNA cleavage activity. Taken together, our results demonstrate that mutations in any known subunit of the TSEN complex can cause PCH and progressive microcephaly, emphasizing the importance of its function during brain development.


Subject(s)
Cerebellar Diseases/genetics , Endonucleases/genetics , Genes, Recessive , Microcephaly/genetics , Mutation , Amino Acid Sequence , Child , Child, Preschool , Endonucleases/chemistry , Female , Humans , Infant , Infant, Newborn , Male , Models, Molecular , Pedigree
13.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38777371

ABSTRACT

Pathogenic and likely pathogenic variants in the TECRL gene are known to be associated with recessive catecholaminergic polymorphic ventricular tachycardia 3, which can include prolonged QT intervals (MIM#614021). We report a case of cardiac arrest in a previously healthy adolescent male in the community. The patient was found to have a novel maternally inherited likely pathogenic variant in TECRL (c.915T>G [p.Tyr305Ter]) and an additional 19-kb duplication encompassing multiple exons of TECRL (chr4:65165944-65185287, dup [4q13.1]) not identified in the mother. Genetic results were revealed via rapid whole-genome sequencing, which allowed appropriate treatment and prognostication.


Subject(s)
Tachycardia, Ventricular , Humans , Tachycardia, Ventricular/genetics , Male , Adolescent , Pedigree , Mutation , Electrocardiography , Genetic Predisposition to Disease , Whole Genome Sequencing
14.
Science ; 384(6695): 584-590, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38696583

ABSTRACT

Meningomyelocele is one of the most severe forms of neural tube defects (NTDs) and the most frequent structural birth defect of the central nervous system. We assembled the Spina Bifida Sequencing Consortium to identify causes. Exome and genome sequencing of 715 parent-offspring trios identified six patients with chromosomal 22q11.2 deletions, suggesting a 23-fold increased risk compared with the general population. Furthermore, analysis of a separate 22q11.2 deletion cohort suggested a 12- to 15-fold increased NTD risk of meningomyelocele. The loss of Crkl, one of several neural tube-expressed genes within the minimal deletion interval, was sufficient to replicate NTDs in mice, where both penetrance and expressivity were exacerbated by maternal folate deficiency. Thus, the common 22q11.2 deletion confers substantial meningomyelocele risk, which is partially alleviated by folate supplementation.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 22 , Meningomyelocele , Animals , Female , Humans , Male , Mice , Chromosomes, Human, Pair 22/genetics , DiGeorge Syndrome/genetics , Exome Sequencing , Folic Acid/administration & dosage , Folic Acid Deficiency/complications , Folic Acid Deficiency/genetics , Meningomyelocele/epidemiology , Meningomyelocele/genetics , Penetrance , Spinal Dysraphism/genetics , Risk , Adaptor Proteins, Signal Transducing/genetics
15.
Nat Genet ; 55(2): 209-220, 2023 02.
Article in English | MEDLINE | ID: mdl-36635388

ABSTRACT

Malformations of cortical development (MCD) are neurological conditions involving focal disruptions of cortical architecture and cellular organization that arise during embryogenesis, largely from somatic mosaic mutations, and cause intractable epilepsy. Identifying the genetic causes of MCD has been a challenge, as mutations remain at low allelic fractions in brain tissue resected to treat condition-related epilepsy. Here we report a genetic landscape from 283 brain resections, identifying 69 mutated genes through intensive profiling of somatic mutations, combining whole-exome and targeted-amplicon sequencing with functional validation including in utero electroporation of mice and single-nucleus RNA sequencing. Genotype-phenotype correlation analysis elucidated specific MCD gene sets associated with distinct pathophysiological and clinical phenotypes. The unique single-cell level spatiotemporal expression patterns of mutated genes in control and patient brains indicate critical roles in excitatory neurogenic pools during brain development and in promoting neuronal hyperexcitability after birth.


Subject(s)
Epilepsy , Malformations of Cortical Development , Humans , Multiomics , Brain/metabolism , Epilepsy/genetics , Mutation , Malformations of Cortical Development/genetics , Malformations of Cortical Development/metabolism
16.
Article in English | MEDLINE | ID: mdl-33883208

ABSTRACT

Visceral myopathies (VMs) encompass a spectrum of disorders characterized by chronic disruption of gastrointestinal function, with or without urinary system involvement. Pathogenic missense variation in smooth muscle γ-actin gene (ACTG2) is associated with autosomal dominant VM. Whole-genome sequencing of an infant presenting with chronic intestinal pseudo-obstruction revealed a homozygous 187 bp (c.589_613 + 163del188) deletion spanning the exon 6-intron 6 boundary within ACTG2 The patient's clinical course was marked by prolonged hospitalizations, multiple surgeries, and intermittent total parenteral nutrition dependence. This case supports the emerging understanding of allelic heterogeneity in ACTG2-related VM, in which both biallelic and monoallelic variants in ACTG2 are associated with gastrointestinal dysfunction of similar severity and overlapped clinical presentation. Moreover, it illustrates the clinical utility of rapid whole-genome sequencing, which can comprehensively and precisely detect different types of genomic variants including small deletions, leading to guidance of clinical care decisions.


Subject(s)
Actins/genetics , Genotype , Intestinal Pseudo-Obstruction/diagnosis , Intestinal Pseudo-Obstruction/genetics , Humans , Ileus , Infant , Intestinal Pseudo-Obstruction/pathology , Male , Pedigree , Treatment Outcome , Whole Genome Sequencing
17.
Orphanet J Rare Dis ; 15(1): 191, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32698834

ABSTRACT

BACKGROUND: In diagnosis of rare genetic diseases we face a decision as to the degree to which the sequencing lab offers one or more diagnoses based on clinical input provided by the clinician, or the clinician reaches a diagnosis based on the complete set of variants provided by the lab. We tested a software approach to assist the clinician in making the diagnosis based on clinical findings and an annotated genomic variant table, using cases already solved using less automated processes. RESULTS: For the 81 cases studied (involving 216 individuals), 70 had genetic abnormalities with phenotypes previously described in the literature, and 11 were not described in the literature at the time of analysis ("discovery genes"). These included cases beyond a trio, including ones with different variants in the same gene. In 100% of cases the abnormality was recognized. Of the 70, the abnormality was ranked #1 in 94% of cases, with an average rank 1.1 for all cases. Large CNVs could be analyzed in an integrated analysis, performed in 24 of the cases. The process is rapid enough to allow for periodic reanalysis of unsolved cases. CONCLUSIONS: A clinician-friendly environment for clinical correlation can be provided to clinicians who are best positioned to have the clinical information needed for this interpretation.


Subject(s)
Rare Diseases , Software , DNA Copy Number Variations , Genomics , Humans , Phenotype , Rare Diseases/diagnosis , Rare Diseases/genetics
18.
NPJ Genom Med ; 5: 33, 2020.
Article in English | MEDLINE | ID: mdl-32821428

ABSTRACT

To investigate the diagnostic and clinical utility of a partially automated reanalysis pipeline, forty-eight cases of seriously ill children with suspected genetic disease who did not receive a diagnosis upon initial manual analysis of whole-genome sequencing (WGS) were reanalyzed at least 1 year later. Clinical natural language processing (CNLP) of medical records provided automated, updated patient phenotypes, and an automated analysis system delivered limited lists of possible diagnostic variants for each case. CNLP identified a median of 79 new clinical features per patient at least 1 year later. Compared to a standard manual reanalysis pipeline, the partially automated pipeline reduced the number of variants to be analyzed by 90% (range: 74%-96%). In 2 cases, diagnoses were made upon reinterpretation, representing an incremental diagnostic yield of 4.2% (2/48, 95% CI: 0.5-14.3%). Four additional cases were flagged with a possible diagnosis to be considered during subsequent reanalysis. Separately, copy number analysis led to diagnoses in two cases. Ongoing discovery of new disease genes and refined variant classification necessitate periodic reanalysis of negative WGS cases. The clinical features of patients sequenced as infants evolve rapidly with age. Partially automated reanalysis, including automated re-phenotyping through CNLP, has the potential to identify molecular diagnoses with reduced expert labor intensity.

19.
Epilepsia Open ; 5(1): 97-106, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32140648

ABSTRACT

OBJECTIVES: Recently, defects in the protein kinase mTOR (mammalian target of rapamycin) and its associated pathway have been correlated with hemimegalencephaly (HME). mTOR acts as a central regulator of important physiological cellular functions such as growth and proliferation, metabolism, autophagy, death, and survival. This study was aimed at identifying specific variants in mTOR signaling pathway genes in patients diagnosed with HME. METHODS: Using amplicon and whole exome sequencing (WES) of resected brain and paired blood samples from five HME patients, we were able to identify pathogenic mosaic variants in the mTOR pathway genes MTOR, PIK3CA, and DEPDC5. RESULTS: These results strengthen the hypothesis that somatic variants in PI3K-Akt-mTOR pathway genes contribute to HME. We also describe one patient presenting with a pathogenic variant on DEPDC5 gene, which reinforces the role of DEPDC5 on cortical structural changes due to mTORC1 hyperactivation. These findings also provide insights into when in brain development these variants occurred. An early developmental variant is expected to affect a larger number of cells and to result in a larger malformation, whereas the same variant occurring later in development would cause a minor malformation. SIGNIFICANCE: In the future, numerous somatic variants in known or new genes will undoubtedly be revealed in resected brain samples, making it possible to draw correlations between genotypes and phenotypes and allow for a genetic clinical diagnosis that may help to predict a given patient's outcome.

20.
Mol Genet Genomic Med ; 8(2): e1049, 2020 02.
Article in English | MEDLINE | ID: mdl-31880413

ABSTRACT

BACKGROUND: A causal genetic mutation is found in 40% of families with dilated cardiomyopathy (DCM), leaving a large percentage of families genetically unsolved. This prevents adequate counseling and clear recommendations in these families. We aim to identify novel genes or modifiers associated with DCM. METHODS: We performed computational ranking of human genes based on coexpression with a predefined set of genes known to be associated with DCM, which allowed us to prioritize gene candidates for their likelihood of being involved in DCM. Top candidates will be checked for variants in the available whole-exome sequencing data of 142 DCM patients. RNA was isolated from cardiac biopsies to investigate gene expression. RESULTS: PDLIM5 was classified as the top candidate. An interesting heterozygous variant (189_190delinsGG) was found in a DCM patient with a known pathogenic truncating TTN-variant. The PDLIM5 loss-of-function (LoF) variant affected all cardiac-specific isoforms of PDLIM5 and no LoF variants were detected in the same region in a control cohort of 26,000 individuals. RNA expression of PDLIM5 and its direct interactors (MYOT, LDB3, and MYOZ2) was increased in cardiac tissue of this patient, indicating a possible compensatory mechanism. The PDLIM5 variant cosegregated with the TTN-variant and the phenotype, leading to a high disease penetrance in this family. A second patient was an infant with a homozygous 10 kb-deletion of exon 2 in PDLIM5 resulting in early-onset cardiac disease, showing the importance of PDLIM5 in cardiac function. CONCLUSIONS: Heterozygous PDLIM5 variants are rare and therefore will not have a major contribution in DCM. Although they likely play a role in disease development as this gene plays a major role in contracting cardiomyocytes and homozygous variants lead to early-onset cardiac disease. Other environmental and/or genetic factors are probably necessary to unveil the cardiac phenotype in PDLIM5 mutation carriers.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cardiomyopathy, Dilated/genetics , Genes, Modifier , LIM Domain Proteins/genetics , Loss of Function Mutation , Adaptor Proteins, Signal Transducing/metabolism , Adult , Aged , Cardiomyopathy, Dilated/diagnosis , Carrier Proteins/genetics , Connectin/genetics , Female , Genetic Testing , Humans , LIM Domain Proteins/metabolism , Male , Microfilament Proteins/genetics , Middle Aged , Muscle Proteins/genetics , Myocardium/metabolism , Pedigree , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL