ABSTRACT
Regulation of IFN signaling is critical in host recognition and response to pathogens while its dysregulation underlies the pathogenesis of several chronic diseases. STimulator of IFN Genes (STING) has been identified as a critical mediator of IFN inducing innate immune pathways, but little is known about direct coregulators of this protein. We report here that TMEM203, a conserved putative transmembrane protein, is an intracellular regulator of STING-mediated signaling. We show that TMEM203 interacts, functionally cooperates, and comigrates with STING following cell stimulation, which in turn leads to the activation of the kinase TBK1, and the IRF3 transcription factor. This induces target genes in macrophages, including IFN-ß. Using Tmem203 knockout bone marrow-derived macrophages and transient knockdown of TMEM203 in human monocyte-derived macrophages, we show that TMEM203 protein is required for cGAMP-induced STING activation. Unlike STING, TMEM203 mRNA levels are elevated in T cells from patients with systemic lupus erythematosus, a disease characterized by the overexpression of type I interferons. Moreover, TMEM203 mRNA levels are associated with disease activity, as assessed by serum levels of the complement protein C3. Identification of TMEM203 sheds light into the control of STING-mediated innate immune responses, providing a potential novel mechanism for therapeutic interventions in STING-associated inflammatory diseases.
Subject(s)
Inflammation/metabolism , Macrophages/metabolism , Macrophages/pathology , Membrane Proteins/metabolism , Signal Transduction , Conserved Sequence , Down-Regulation , Evolution, Molecular , HeLa Cells/metabolism , Humans , Inflammation/pathology , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Lysosomes/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Nucleotides, Cyclic/metabolism , Protein Binding , Protein Domains , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stromal Interaction Molecule 1/metabolismABSTRACT
By sensing viral nucleic acids, host innate receptors elicit signaling pathways converging on TBK1-IFN regulatory factor (IRF)3 axis in mediating IFN-αß induction and defense mechanisms. In contrast, viruses have evolved with diverse immune evasion/interference mechanisms to undermine innate receptor signaling and IFN response. In this regard, approaches enabling host to overcome such immune evasion/interference mechanisms are urgently needed to combat infections by epidemic/pandemic viruses. In this study, we report that protein kinase CK2 serves as a key component controlling TBK1 and IRF3 activation in IFN-inducing TLR, RIG-I-like receptors, and cGAS/STING signaling pathways. Accordingly, knocking down of CK2 expression or genetic ablation of its kinase activity resulted in elevated IFN-αß response in response to infection by DNA and RNA viruses. Moreover, PP2A was identified as one of the intermediate phosphatases responsible for CK2-regulated IFN response, suggesting that CK2 may regulate TBK1 and IRF3 activation indirectly. Importantly, blockade of CK2 activity by small molecule inhibitor was able to activate TBK1, whereby eliciting effective host defense mechanisms against hepatitis C virus infection. Taken together, our results identify CK2 as a novel regulator of TBK1 and IRF3 and suggest that targeting CK2 by small molecular inhibitor may be a viable approach to prevent and treat viral infections.
Subject(s)
Casein Kinase II/metabolism , Interferon Regulatory Factor-3/metabolism , Interferons/metabolism , Protein Serine-Threonine Kinases/metabolism , Virus Diseases/immunology , Virus Diseases/metabolism , Animals , Casein Kinase II/antagonists & inhibitors , Cell Line , Disease Models, Animal , Hepatitis C/immunology , Hepatitis C/metabolism , Herpes Simplex/genetics , Herpes Simplex/immunology , Herpes Simplex/metabolism , Herpesvirus 1, Human/immunology , Humans , Membrane Proteins/metabolism , Mice , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism , Virus Diseases/geneticsABSTRACT
Detection of cytosolic nucleic acids by pattern recognition receptors, including STING and RIG-I, leads to the activation of multiple signalling pathways that culminate in the production of type I interferons (IFNs) which are vital for host survival during virus infection. In addition to protective immune modulatory functions, type I IFNs are also associated with autoimmune diseases. Hence, it is important to elucidate the mechanisms that govern their expression. In this study, we identified a critical regulatory function of the DUSP4 phosphatase in innate immune signalling. We found that DUSP4 regulates the activation of TBK1 and ERK1/2 in a signalling complex containing DUSP4, TBK1, ERK1/2 and IRF3 to regulate the production of type I IFNs. Mice deficient in DUSP4 were more resistant to infections by both RNA and DNA viruses but more susceptible to malaria parasites. Therefore, our study establishes DUSP4 as a regulator of nucleic acid sensor signalling and sheds light on an important facet of the type I IFN regulatory system.
Subject(s)
Interferon Type I , Membrane Proteins , Protein Tyrosine Phosphatases , Receptors, Cell Surface , Roundabout Proteins , Virus Diseases , Animals , Mice , Immunity, Innate , Interferon Type I/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Virus Diseases/immunology , Virus Diseases/metabolism , Membrane Proteins/metabolism , Roundabout Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Receptors, Cell Surface/metabolismABSTRACT
The mitogen-activated protein kinase (MAPK) cascades are activated in innate immune cells such as macrophages upon the detection of microbial infection, critically regulating the expression of proinflammatory cytokines and chemokines such as TNF-α, IL-6, and MCP-1. As a result, activation of MAPKs is tightly regulated to ensure appropriate and adequate immune responses. Dual-specificity phosphatases (DUSPs) are a family of proteins which specifically dephosphorylates threonine and tyrosine residues essential for MAPK activation to negatively regulate their activation. DUSP12 is a member of atypical DUSPs that lack MAPK-binding domain. Its substrate and function in immune cells are unknown. In this study, we demonstrated that DUSP12 is able to interact with all the three groups of MAPKs, including extracellular signal-regulated protein kinase, JNK, and p38. To investigate the function of DUSP12 in macrophages in response to TLR activation and microbial infection, we established RAW264.7 cell lines stably overexpressing DUSP12 and found that overexpression of DUSP12 inhibited proinflammatory cytokine and chemokine production in response to TLR4 activation, heat-inactivated Mycobacterium tuberculosis stimulation as well as infections by intracellular bacteria including Listeria moncytogenesis and Mycobacterium bovis BCG by specifically inhibiting p38 and JNK. In addition, a scaffold protein known as signal transducing adaptor protein 2 (STAP2), was found to mediate the interaction between DUSP12 and p38. Thus, DUSP12 is a bona fide MAPK phosphatase, playing an important role in MAPK-regulated responses to bacterial infection. Our study provides a model where atypical DUSPs regulate MAPKs via scaffold, thereby regulating immune responses to microbial infection.
ABSTRACT
The type I interferon system is essential for antiviral immune response and is a primary target of viral immune evasion strategies. Here, we show that virus infection induces the expression of MAPK phosphatase 5 (MKP5), a dual-specificity phosphatase (DUSP), in host cells. Mice deficient in MKP5 were resistant to H1N1 influenza infection, which is associated with increased IRF3 activation and type I interferon expression in comparison with WT mice. Increased type I interferon responses were also observed in MKP5-deficient cells and animals upon other RNA virus infection, including vesicular stomatitis virus and sendai virus. These observations were attributed to the ability of MKP5 to interact with and dephosphorylate IRF3. Our study reveals a critical function of a DUSP in negative regulation of IRF3 activity and demonstrates a mechanism by which influenza and other RNA viruses inhibit type I interferon response in the host through MKP5.