Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Am Nat ; 192(5): 605-617, 2018 11.
Article in English | MEDLINE | ID: mdl-30332588

ABSTRACT

In this intercontinental study of stream diatoms, we asked three important but still unresolved ecological questions: (1) What factors drive the biogeography of species richness and species abundance distribution (SAD)? (2) Are climate-related hypotheses, which have dominated the research on the latitudinal and altitudinal diversity gradients, adequate in explaining spatial biotic variability? and (3) Is the SAD response to the environment independent of richness? We tested a number of climatic theories and hypotheses (i.e., the species-energy theory, the metabolic theory, the energy variability hypothesis, and the climatic tolerance hypothesis) but found no support for any of these concepts, as the relationships of richness with explanatory variables were nonexistent, weak, or unexpected. Instead, we demonstrated that diatom richness and SAD evenness generally increased with temperature seasonality and at mid- to high total phosphorus concentrations. The spatial patterns of diatom richness and the SAD-mainly longitudinal in the United States but latitudinal in Finland-were defined primarily by the covariance of climate and water chemistry with space. The SAD was not entirely controlled by richness, emphasizing its utility for ecological research. Thus, we found support for the operation of both climate and water chemistry mechanisms in structuring diatom communities, which underscores their complex response to the environment and the necessity for novel predictive frameworks.


Subject(s)
Climate , Diatoms/physiology , Rivers/chemistry , Altitude , Biodiversity , Ecosystem , Geography , Seasons , Temperature
2.
BMC Genet ; 16: 103, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26289555

ABSTRACT

BACKGROUND: Invasive species can be a major threat to native biodiversity and the number of invasive plant species is increasing across the globe. Population genetic studies of invasive species can provide key insights into their invasion history and ensuing evolution, but also for their control. Here we genetically characterise populations of Impatiens glandulifera, an invasive plant in Europe that can have a major impact on native plant communities. We compared populations from the species' native range in Kashmir, India, to those in its invaded range, along a latitudinal gradient in Europe. For comparison, the results from 39 other studies of genetic diversity in invasive species were collated. RESULTS: Our results suggest that I. glandulifera was established in the wild in Europe at least twice, from an area outside of our Kashmir study area. Our results further revealed that the genetic diversity in invasive populations of I. glandulifera is unusually low compared to native populations, in particular when compared to other invasive species. Genetic drift rather than mutation seems to have played a role in differentiating populations in Europe. We find evidence of limitations to local gene flow after introduction to Europe, but somewhat less restrictions in the native range. I. glandulifera populations with significant inbreeding were only found in the species' native range and invasive species in general showed no increase in inbreeding upon leaving their native ranges. In Europe we detect cases of migration between distantly located populations. Human activities therefore seem to, at least partially, have facilitated not only introductions, but also further spread of I. glandulifera across Europe. CONCLUSIONS: Although multiple introductions will facilitate the retention of genetic diversity in invasive ranges, widespread invasive species can remain genetically relatively invariant also after multiple introductions. Phenotypic plasticity may therefore be an important component of the successful spread of Impatiens glandulifera across Europe.


Subject(s)
Genetic Variation , Impatiens/genetics , Introduced Species , Alleles , Europe , Genetic Markers , Genetics, Population , Genotype , Geography , Models, Statistical , Mutation
3.
Ecology ; 104(3): e3917, 2023 03.
Article in English | MEDLINE | ID: mdl-36336908

ABSTRACT

The species-area relationship (SAR) has over a 150-year-long history in ecology, but how its shape and origins vary across scales and organisms remains incompletely understood. This is the first subcontinental freshwater study to examine both these properties of the SAR in a spatially explicit way across major organismal groups (diatoms, insects, and fish) that differ in body size and dispersal capacity. First, to describe the SAR shape, we evaluated the fit of three commonly used models, logarithmic, power, and Michaelis-Menten. Second, we proposed a hierarchical framework to explain the variability in the SAR shape, captured by the parameters of the SAR model. According to this framework, scale and species group were the top predictors of the SAR shape, climatic factors (heterogeneity and median conditions) represented the second predictor level, and metacommunity properties (intraspecific spatial aggregation, γ-diversity, and species abundance distribution) the third predictor level. We calculated the SAR as a sample-based rarefaction curve using 60 streams within landscape windows (scales) in the United States, ranging from 160,000 to 6,760,000 km2 . First, we found that all models provided good fits (R2 ≥ 0.93), but the frequency of the best-fitting model was strongly dependent on organism, scale, and metacommunity properties. The Michaelis-Menten model was most common in fish, at the largest scales, and at the highest levels of intraspecific spatial aggregation. The power model was most frequent in diatoms and insects, at smaller scales, and in metacommunities with the lowest evenness. The logarithmic model fit best exclusively at the smallest scales and in species-poor metacommunities, primarily fish. Second, we tested our framework with the parameters of the most broadly used SAR model, the log-log form of the power model, using a structural equation model. This model supported our framework and revealed that the SAR slope was best predicted by scale- and organism-dependent metacommunity properties, particularly spatial aggregation, whereas the intercept responded most strongly to species group and γ-diversity. Future research should investigate from the perspective of our framework how shifts in metacommunity properties due to climate change may alter the SAR.


Subject(s)
Ecology , Fresh Water , Animals , Rivers , Fishes , Ecosystem , Biodiversity
4.
Sci Total Environ ; 896: 165081, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37355122

ABSTRACT

Typology systems are frequently used in applied and fundamental ecology and are relevant for environmental monitoring and conservation. They aggregate ecosystems into discrete types based on biotic and abiotic variables, assuming that ecosystems of the same type are more alike than ecosystems of different types with regard to a specific property of interest. We evaluated whether this assumption is met by the Broad River Types (BRT), a recently proposed European river typology system, that classifies river segments based on abiotic variables, when it is used to group biological communities. We compiled data on the community composition of diatoms, fishes, and aquatic macrophytes throughout Europe and evaluated whether the composition is more similar in site groups with the same river type than in site groups of different river types using analysis of similarities, classification strength, typical species analysis, and the area under zeta diversity decline curves. We compared the performance of the BRT with those of four region-based typology systems, namely, Illies Freshwater Ecoregions, the Biogeographic Regions, the Freshwater Ecoregions of the World, and the Environmental Zones, as well as spatial autocorrelation (SA) classifications. All typology systems received low scores from most evaluation methods, relative to predefined thresholds and the SA classifications. The BRT often scored lowest of all typology systems. Within each typology system, community composition overlapped considerably between site groups defined by the types of the systems. The overlap tended to be the lowest for fishes and between Illies Freshwater Ecoregions. In conclusion, we found that existing broad-scale river typology systems fail to delineate site groups with distinct and compositionally homogeneous communities of diatoms, fishes, and macrophytes. A way to improve the fit between typology systems and biological communities might be to combine segment-based and region-based typology systems to simultaneously account for local environmental variation and historical distribution patterns, thus potentially improving the utility of broad-scale typology systems for freshwater biota.


Subject(s)
Diatoms , Ecosystem , Animals , Rivers , Fishes , Environmental Monitoring/methods
5.
Sci Data ; 8(1): 40, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531503

ABSTRACT

In lake ecosystems, phytoplankton communities can be studied by adopting taxonomic-based approaches. However, these approaches suffer from identification issues and are sometimes of limited ecosystem ecological value. The recent development of functional approaches may allow an evaluation of other aspects of ecosystem quality, functions and interactions with abiotic parameters or other communities. Here, our aim was to create a phytoplankton trait database at the French scale. This database will be relevant for the analysis of phytoplankton communities that will lead to a better understanding of phytoplankton functional ecology in lakes of France and other European countries possessing similar biological communities. We used a French national database of phytoplankton occurrences sampled from 384 lakes over the entire French metropolitan territory. A final list of 636 taxa was used to compile 53 morpho-functional traits associated with taxonomic information. The traits encompassed variables such as shape, biovolume, motility, toxin production and Reynolds groups. With this new database, we aim to provide data for morpho-functional analyses of phytoplankton assemblages from local to European scale.


Subject(s)
Ecosystem , Environmental Monitoring , Lakes , Phytoplankton/growth & development , France , Phenotype
7.
Front Plant Sci ; 9: 1781, 2018.
Article in English | MEDLINE | ID: mdl-30559756

ABSTRACT

Exotic hydrophytes are often considered as aquatic weeds, especially when forming dense mats on an originally poorly colonized environment. While management efforts and research are focused on the control and on the impacts of aquatic weeds on biodiversity, their influence on shallow lakes' biogeochemical cycles is still unwell explored. The aim of the present study is to understand whether invasive aquatic plants may affect the biogeochemistry of shallow lakes and act as ecosystem engineers. We performed a multi-year investigation (2013-2015) of dissolved biogeochemical parameters in an oligo-mesotrophic shallow lake of south-west of France (Lacanau Lake), where wind-sheltered bays are colonized by dense mats of exotic Egeria densa Planch. and Lagarosiphon major (Ridl.) Moss. We collected seasonal samples at densely vegetated and plant-free areas, in order to extrapolate and quantify the role of the presence of invasive plants on the biogeochemistry, at the macrophyte stand scale and at the lake scale. Results revealed that elevated plant biomass triggers oxygen (O2), dissolved inorganic carbon (DIC) and nitrogen (DIN) stratification, with hypoxia events frequently occurring at the bottom of the water column. Within plants bed, elevated respiration rates generated important amounts of carbon dioxide (CO2), methane (CH4) and ammonium (NH4 +). The balance between benthic nutrients regeneration and fixation into biomass results strictly connected to the seasonal lifecycle of the plants. Indeed, during summer, DIC and DIN regenerated from the sediment are quickly fixed into plant biomass and sustain elevated growth rates. On the opposite, in spring and autumn, bacterial and plant respiration overcome nutrients fixation, resulting in an excess of nutrients in the water and in the increase of carbon emission toward the atmosphere. Our study suggests that aquatic weeds may perform as ecosystem engineers, by negatively affecting local oxygenation and by stimulating nutrients regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL