Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mol Psychiatry ; 26(6): 2148-2162, 2021 06.
Article in English | MEDLINE | ID: mdl-33420481

ABSTRACT

DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N = 15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha = 1.2 × 10-7; Bonferroni correction). In cord blood samples of 2425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression (r = 0.74, p = 0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripheral blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range = 3-82%) of the aggression-methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.


Subject(s)
DNA Methylation , Epigenome , Adolescent , Adult , Aged , Aggression , Child , Child, Preschool , CpG Islands/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Genome-Wide Association Study , Humans , Longevity , Middle Aged , Young Adult
2.
Hum Mol Genet ; 25(24): 5332-5338, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27798101

ABSTRACT

The mitochondrial and nuclear genomes coordinate and co-evolve in eukaryotes in order to adapt to environmental changes. Variation in the mitochondrial genome is capable of affecting expression of genes on the nuclear genome. Sex-specific mitochondrial genetic control of gene expression has been demonstrated in Drosophila melanogaster, where males were found to drive most of the total variation in gene expression. This has potential implications for male-related health and disease resulting from variation in mtDNA solely inherited from the mother. We used a family-based study comprised of 47,323 gene expression probes and 78 mitochondrial SNPs (mtSNPs) from n = 846 individuals to examine the extent of mitochondrial genetic control of gene expression in humans. This identified 15 significant probe-mtSNP associations (P<10-8) corresponding to 5 unique genes on the mitochondrial and nuclear genomes, with three of these genes corresponding to mitochondrial genetic control of gene expression in the nuclear genome. The associated mtSNPs for three genes (one cis and two trans associations) were replicated (P < 0.05) in an independent dataset of n = 452 unrelated individuals. There was no evidence for sexual dimorphic gene expression in any of these five probes. Sex-specific effects were examined by applying our analysis to males and females separately and testing for differences in effect size. The MEST gene was identified as having the most significantly different effect sizes across the sexes (P≈10-7). MEST was similarly expressed in males and females with the G allele; however, males with the C allele are highly expressed for MEST, while females show no expression of the gene. This study provides evidence for the mitochondrial genetic control of expression of several genes in humans, with little evidence found for sex-specific effects.


Subject(s)
DNA, Mitochondrial/genetics , Gene Expression Regulation/genetics , Mitochondria/genetics , Protein Biosynthesis/genetics , Alleles , Animals , Cell Nucleus/genetics , Chromosomes/genetics , Drosophila melanogaster/genetics , Female , Humans , Male , Polymorphism, Single Nucleotide/genetics , Sex Characteristics
3.
Commun Biol ; 5(1): 565, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35681050

ABSTRACT

The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.


Subject(s)
Aging , Telomere , Aging/genetics , Epigenesis, Genetic , Female , Humans , Life Style , Parents , Pregnancy , Telomere/genetics
4.
Nat Commun ; 11(1): 2928, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32522985

ABSTRACT

Structural variants (SVs) and short tandem repeats (STRs) are important sources of genetic diversity but are not routinely analyzed in genetic studies because they are difficult to accurately identify and genotype. Because SVs and STRs range in size and type, it is necessary to apply multiple algorithms that incorporate different types of evidence from sequencing data and employ complex filtering strategies to discover a comprehensive set of high-quality and reproducible variants. Here we assemble a set of 719 deep whole genome sequencing (WGS) samples (mean 42×) from 477 distinct individuals which we use to discover and genotype a wide spectrum of SV and STR variants using five algorithms. We use 177 unique pairs of genetic replicates to identify factors that affect variant call reproducibility and develop a systematic filtering strategy to create of one of the most complete and well characterized maps of SVs and STRs to date.


Subject(s)
Microsatellite Repeats/genetics , Whole Genome Sequencing/methods , Algorithms , Computational Biology , Genotype , Haplotypes/genetics , High-Throughput Nucleotide Sequencing , Humans
5.
Nat Genet ; 51(1): 180-186, 2019 01.
Article in English | MEDLINE | ID: mdl-30478441

ABSTRACT

Different exposures, including diet, physical activity, or external conditions can contribute to genotype-environment interactions (G×E). Although high-dimensional environmental data are increasingly available and multiple exposures have been implicated with G×E at the same loci, multi-environment tests for G×E are not established. Here, we propose the structured linear mixed model (StructLMM), a computationally efficient method to identify and characterize loci that interact with one or more environments. After validating our model using simulations, we applied StructLMM to body mass index in the UK Biobank, where our model yields previously known and novel G×E signals. Finally, in an application to a large blood eQTL dataset, we demonstrate that StructLMM can be used to study interactions with hundreds of environmental variables.


Subject(s)
Gene-Environment Interaction , Algorithms , Computer Simulation , Environment , Genotype , Humans , Linear Models , Models, Genetic , Quantitative Trait Loci/genetics
6.
Nat Commun ; 10(1): 4361, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554804

ABSTRACT

Age-related tissue alterations have been associated with a decline in stem cell number and function. Although increased cell-to-cell variability in transcription or epigenetic marks has been proposed to be a major hallmark of ageing, little is known about the molecular diversity of stem cells during ageing. Here we present a single cell multi-omics study of mouse muscle stem cells, combining single-cell transcriptome and DNA methylome profiling. Aged cells show a global increase of uncoordinated transcriptional heterogeneity biased towards genes regulating cell-niche interactions. We find context-dependent alterations of DNA methylation in aged stem cells. Importantly, promoters with increased methylation heterogeneity are associated with increased transcriptional heterogeneity of the genes they drive. These results indicate that epigenetic drift, by accumulation of stochastic DNA methylation changes in promoters, is associated with the degradation of coherent transcriptional networks during stem cell ageing. Furthermore, our observations also shed light on the mechanisms underlying the DNA methylation clock.


Subject(s)
Aging , Cellular Senescence , DNA Methylation , Stem Cells/metabolism , Transcriptome/genetics , Animals , Cells, Cultured , Epigenesis, Genetic , Epigenomics/methods , Gene Expression Profiling/methods , Gene Ontology , Humans , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Muscles/cytology , Promoter Regions, Genetic/genetics , Single-Cell Analysis , Stem Cells/cytology
7.
Eur J Gastroenterol Hepatol ; 30(8): 828-837, 2018 08.
Article in English | MEDLINE | ID: mdl-29787419

ABSTRACT

BACKGROUND: Approximately 5% of patients with celiac disease (CeD) do not respond to a gluten-free diet and progress to refractory celiac disease (RCD), a severe progression that is characterized by infiltration of intraepithelial T lymphocytes. Patients with RCD type II (RCDII) show clonal expansions of intraepithelial T lymphocytes that result in a poor prognosis and a high mortality rate through development of aggressive enteropathy-associated T-cell lymphoma. It is not known whether genetic variations play a role in severe progression of CeD to RCDII. PATIENTS AND METHODS: We performed the first genome-wide association study to identify the causal genes for RCDII and the molecular pathways perturbed in RCDII. The genome-wide association study was performed in 38 Dutch patients with RCDII, and the 15 independent top-associated single nucleotide polymorphism (SNP) variants (P<5×10) were replicated in 56 independent French and Dutch patients with RCDII. RESULTS: After replication, SNP rs2041570 on chromosome 7 was significantly associated with progression to RCDII (P=2.37×10, odds ratio=2.36) but not with CeD susceptibility. SNP rs2041570 risk allele A was associated with lower levels of FAM188B expression in blood and small intestinal biopsies. Stratification of RCDII biopsies based on rs2041570 genotype showed differential expression of innate immune and antibacterial genes that are expressed in Paneth cells. CONCLUSION: We have identified a novel SNP associated with the severe progression of CeD to RCDII. Our data suggest that genetic susceptibility to CeD might be distinct from the progression to RCDII and suggest a role for Paneth cells in RCDII progression.


Subject(s)
Celiac Disease/genetics , Chromosomes, Human, Pair 7/genetics , Polymorphism, Single Nucleotide , Biopsy , Case-Control Studies , Celiac Disease/diagnosis , Celiac Disease/diet therapy , Celiac Disease/immunology , Diet, Gluten-Free , Disease Progression , Female , France , Gastrointestinal Microbiome/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Immunity, Innate/genetics , Intestine, Small/immunology , Intestine, Small/microbiology , Intestine, Small/pathology , Male , Membrane Proteins/genetics , Multivariate Analysis , Netherlands , Odds Ratio , Paneth Cells/immunology , Paneth Cells/microbiology , Paneth Cells/pathology , Phenotype , Risk Factors , Severity of Illness Index , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL