Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 24(12): 2080-2090, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957354

ABSTRACT

Aberrant differentiation of progenitor cells in the hematopoietic system is known to severely impact host immune responsiveness. Here we demonstrate that NOD1, a cytosolic innate sensor of bacterial peptidoglycan, also functions in murine hematopoietic cells as a major regulator of both the generation and differentiation of lymphoid progenitors as well as peripheral T lymphocyte homeostasis. We further show that NOD1 mediates these functions by facilitating STAT5 signaling downstream of hematopoietic cytokines. In steady-state, loss of NOD1 resulted in a modest but significant decrease in numbers of mature T, B and natural killer cells. During systemic protozoan infection this defect was markedly enhanced, leading to host mortality. Lack of functional NOD1 also impaired T cell-dependent anti-tumor immunity while preventing colitis. These findings reveal that, in addition to its classical role as a bacterial ligand receptor, NOD1 plays an important function in regulating adaptive immunity through interaction with a major host cytokine signaling pathway.


Subject(s)
Immunity, Innate , Lymphopoiesis , Animals , Mice , Colitis , Ligands , Signal Transduction
2.
Nat Immunol ; 22(12): 1538-1550, 2021 12.
Article in English | MEDLINE | ID: mdl-34795444

ABSTRACT

The signals driving the adaptation of type 2 dendritic cells (DC2s) to diverse peripheral environments remain mostly undefined. We show that differentiation of CD11blo migratory DC2s-a DC2 population unique to the dermis-required IL-13 signaling dependent on the transcription factors STAT6 and KLF4, whereas DC2s in lung and small intestine were STAT6-independent. Similarly, human DC2s in skin expressed an IL-4 and IL-13 gene signature that was not found in blood, spleen and lung DCs. In mice, IL-13 was secreted homeostatically by dermal innate lymphoid cells and was independent of microbiota, TSLP or IL-33. In the absence of IL-13 signaling, dermal DC2s were stable in number but remained CD11bhi and showed defective activation in response to allergens, with diminished ability to support the development of IL-4+GATA3+ helper T cells (TH), whereas antifungal IL-17+RORγt+ TH cells were increased. Therefore, homeostatic IL-13 fosters a noninflammatory skin environment that supports allergic sensitization.


Subject(s)
Cell Communication , Cell Differentiation , Interleukin-13/metabolism , Langerhans Cells/metabolism , Skin/metabolism , Th17 Cells/metabolism , Th2 Cells/metabolism , Allergens/pharmacology , Animals , CD11b Antigen/genetics , CD11b Antigen/metabolism , Cells, Cultured , Databases, Genetic , Humans , Interleukin-13/genetics , Langerhans Cells/drug effects , Langerhans Cells/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Phenotype , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism , Signal Transduction , Skin/cytology , Skin/drug effects , Skin/immunology , Th17 Cells/drug effects , Th17 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology , Transcriptome
3.
Immunity ; 57(5): 1005-1018.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697116

ABSTRACT

Cytokine expression during T cell differentiation is a highly regulated process that involves long-range promoter-enhancer and CTCF-CTCF contacts at cytokine loci. Here, we investigated the impact of dynamic chromatin loop formation within the topologically associating domain (TAD) in regulating the expression of interferon gamma (IFN-γ) and interleukin-22 (IL-22); these cytokine loci are closely located in the genome and are associated with complex enhancer landscapes, which are selectively active in type 1 and type 3 lymphocytes. In situ Hi-C analyses revealed inducible TADs that insulated Ifng and Il22 enhancers during Th1 cell differentiation. Targeted deletion of a 17 bp boundary motif of these TADs imbalanced Th1- and Th17-associated immunity, both in vitro and in vivo, upon Toxoplasma gondii infection. In contrast, this boundary element was dispensable for cytokine regulation in natural killer cells. Our findings suggest that precise cytokine regulation relies on lineage- and developmental stage-specific interactions of 3D chromatin architectures and enhancer landscapes.


Subject(s)
CCCTC-Binding Factor , Cell Differentiation , Interferon-gamma , Interleukin-22 , Interleukins , Th1 Cells , Animals , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Th1 Cells/immunology , Mice , Cell Differentiation/immunology , Interferon-gamma/metabolism , Binding Sites , Interleukins/metabolism , Interleukins/genetics , Enhancer Elements, Genetic/genetics , Mice, Inbred C57BL , Chromatin/metabolism , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Toxoplasmosis/genetics , Gene Expression Regulation , Toxoplasma/immunology , Cytokines/metabolism , Cell Lineage , Th17 Cells/immunology
4.
Immunity ; 55(4): 639-655.e7, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35381213

ABSTRACT

Adaptive CD4+ T helper cells and their innate counterparts, innate lymphoid cells, utilize an identical set of transcription factors (TFs) for their differentiation and functions. However, similarities and differences in the induction of these TFs in related lymphocytes are still elusive. Here, we show that T helper-1 (Th1) cells and natural killer (NK) cells displayed distinct epigenomes at the Tbx21 locus, which encodes T-bet, a critical TF for regulating type 1 immune responses. The initial induction of T-bet in NK precursors was dependent on the NK-specific DNase I hypersensitive site Tbx21-CNS-3, and the expression of the interleukin-18 (IL-18) receptor; IL-18 induced T-bet expression through the transcription factor RUNX3, which bound to Tbx21-CNS-3. By contrast, signal transducer and activator of transcription (STAT)-binding motifs within Tbx21-CNS-12 were critical for IL-12-induced T-bet expression during Th1 cell differentiation both in vitro and in vivo. Thus, type 1 innate and adaptive lymphocytes utilize distinct enhancer elements for their development and differentiation.


Subject(s)
Immunity, Innate , Interleukin-18 , Killer Cells, Natural , Th1 Cells , Cell Differentiation , Interleukin-18/metabolism , Killer Cells, Natural/immunology , T-Box Domain Proteins/metabolism , Th1 Cells/immunology , Transcription Factors/metabolism
7.
Immunity ; 53(4): 745-758.e4, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33010223

ABSTRACT

Innate immune responses rely on rapid and precise gene regulation mediated by accessibility of regulatory regions to transcription factors (TFs). In natural killer (NK) cells and other innate lymphoid cells, competent enhancers are primed during lineage acquisition, and formation of de novo enhancers characterizes the acquisition of innate memory in activated NK cells and macrophages. Here, we investigated how primed and de novo enhancers coordinate to facilitate high-magnitude gene induction during acute activation. Epigenomic and transcriptomic analyses of regions near highly induced genes (HIGs) in NK cells both in vitro and in a model of Toxoplasma gondii infection revealed de novo chromatin accessibility and enhancer remodeling controlled by signal-regulated TFs STATs. Acute NK cell activation redeployed the lineage-determining TF T-bet to de novo enhancers, independent of DNA-sequence-specific motif recognition. Thus, acute stimulation reshapes enhancer function through the combinatorial usage and repurposing of both lineage-determining and signal-regulated TFs to ensure an effective response.


Subject(s)
Enhancer Elements, Genetic/genetics , Enhancer Elements, Genetic/immunology , Killer Cells, Natural/immunology , Transcription Factors/genetics , Transcription Factors/immunology , Animals , Chromatin/genetics , Chromatin/immunology , Female , Gene Expression/genetics , Gene Expression/immunology , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Toxoplasma/immunology , Toxoplasmosis/genetics , Toxoplasmosis/immunology
8.
Mol Cell ; 75(6): 1229-1242.e5, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31377117

ABSTRACT

Interferon gamma (IFN-γ), critical for host defense and tumor surveillance, requires tight control of its expression. Multiple cis-regulatory elements exist around Ifng along with a non-coding transcript, Ifng-as1 (also termed NeST). Here, we describe two genetic models generated to dissect the molecular functions of this locus and its RNA product. DNA deletion within the Ifng-as1 locus disrupted chromatin organization of the extended Ifng locus, impaired Ifng response, and compromised host defense. Insertion of a polyA signal ablated the Ifng-as1 full-length transcript and impaired host defense, while allowing proper chromatin structure. Transient knockdown of Ifng-as1 also reduced IFN-γ production. In humans, discordant expression of IFNG and IFNG-AS1 was evident in memory T cells, with high expression of this long non-coding RNA (lncRNA) and low expression of the cytokine. These results establish Ifng-as1 as an important regulator of Ifng expression, as a DNA element and transcribed RNA, involved in dynamic and cell state-specific responses to infection.


Subject(s)
Gene Expression Regulation/immunology , Immunologic Memory , Infections/immunology , Interferon-gamma/immunology , RNA, Untranslated/immunology , T-Lymphocytes/immunology , Animals , Chromatin/genetics , Chromatin/immunology , Female , Gene Knockdown Techniques , Infections/genetics , Infections/pathology , Interferon-gamma/genetics , Mice , RNA, Untranslated/genetics , T-Lymphocytes/pathology
9.
Immunity ; 46(6): 983-991.e4, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28623086

ABSTRACT

Host defense requires the specification of CD4+ helper T (Th) cells into distinct fates, including Th1 cells that preferentially produce interferon-γ (IFN-γ). IFN-γ, a member of a large family of anti-pathogenic and anti-tumor IFNs, induces T-bet, a lineage-defining transcription factor for Th1 cells, which in turn supports IFN-γ production in a feed-forward manner. Herein, we show that a cell-intrinsic role of T-bet influences how T cells perceive their secreted product in the environment. In the absence of T-bet, IFN-γ aberrantly induced a type I IFN transcriptomic program. T-bet preferentially repressed genes and pathways ordinarily activated by type I IFNs to ensure that its transcriptional response did not evoke an aberrant amplification of type I IFN signaling circuitry, otherwise triggered by its own product. Thus, in addition to promoting Th1 effector commitment, T-bet acts as a repressor in differentiated Th1 cells to prevent abberant autocrine type I IFN and downstream signaling.


Subject(s)
Autocrine Communication , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , T-Box Domain Proteins/metabolism , Th1 Cells/immunology , Toxoplasma/immunology , Toxoplasmosis/immunology , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Interferon Type I/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , T-Box Domain Proteins/genetics , Th1 Cells/microbiology , Th1 Cells/virology , Transcriptome
10.
J Gen Intern Med ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710866

ABSTRACT

BACKGROUND: Approximately 20% of the United States' population lives in a state or jurisdiction where medical aid in dying (MAiD) is legal. It is unknown how physicians' own barriers are associated with their provision of the spectrum of MAiD services. OBJECTIVE: To measure physicians' religious and/or ethical barriers to providing MAiD services and how such barriers relate to physicians' intentions and behaviors. DESIGN: Three-wave cross-sectional survey fielded in Colorado in 2020-2021. PARTICIPANTS: Physicians providing care to patients likely clinically eligible for MAiD according to probabilistic sampling. MAIN MEASURES: Physicians self-reported barriers to their own participation in MAiD. We considered large ethical and/or religious barriers to be conscience-based barriers. We measured physicians' self-reported intention to participate and self-reported prior participation in MAiD since it was legalized in Colorado in 2017. We estimated differences in intention and behavior outcomes according to presence of conscience-based barriers, adjusting for physician gender, race/ethnicity, time in practice, and specialty. KEY RESULTS: Among 300 respondents, 26% reported "large" ethical and/or religious barriers to their involvement in MAiD. Physicians with longer time in practice and those identifying as non-White were more likely to report conscience-based barriers to MAiD. Comparing physicians with and without conscience-based barriers to MAiD, we found no difference in ancillary participation (discussing, referring) but significant differences in direct participation (serving as consultant [5% vs. 31%] or attending [0% vs. 22%]). CONCLUSIONS: Approximately one-quarter of physicians likely to care for MAiD-eligible patients in Colorado reported religious and/or ethical barriers to MAiD. Despite religious and/or ethical barriers, the vast majority of physicians were willing to discuss MAiD and/or refer patients seeking MAiD services. These data provide important empirical foundation for policy from hospitals and health systems as well as medical specialty groups with official positions on MAiD.

11.
Immunity ; 40(6): 865-79, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24856900

ABSTRACT

Specification of the T helper 17 (Th17) cell lineage requires a well-defined set of transcription factors, but how these integrate with posttranscriptional and epigenetic programs to regulate gene expression is poorly understood. Here we found defective Th17 cell cytokine expression in miR-155-deficient CD4+ T cells in vitro and in vivo. Mir155 was bound by Th17 cell transcription factors and was highly expressed during Th17 cell differentiation. miR-155-deficient Th17 and T regulatory (Treg) cells expressed increased amounts of Jarid2, a DNA-binding protein that recruits the Polycomb Repressive Complex 2 (PRC2) to chromatin. PRC2 binding to chromatin and H3K27 histone methylation was increased in miR-155-deficient cells, coinciding with failure to express Il22, Il10, Il9, and Atf3. Defects in Th17 cell cytokine expression and Treg cell homeostasis in the absence of Mir155 could be partially suppressed by Jarid2 deletion. Thus, miR-155 contributes to Th17 cell function by suppressing the inhibitory effects of Jarid2.


Subject(s)
Cytokines/genetics , Gene Expression Regulation , MicroRNAs/metabolism , Polycomb Repressive Complex 2/immunology , Th17 Cells/immunology , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Animals , Cell Differentiation/immunology , Cells, Cultured , Chromatin/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Protein Binding , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology
12.
J Immunol ; 206(7): 1642-1652, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33627376

ABSTRACT

Human primary monocytes are composed of a minor, more mature CD16+(CD14low/neg) population and a major CD16neg(CD14+) subset. The specific functions of CD16+ versus CD16neg monocytes in steady state or inflammation remain poorly understood. In previous work, we found that IL-12 is selectively produced by the CD16+ subset in response to the protozoan pathogen, Toxoplasma gondii In this study, we demonstrated that this differential responsiveness correlates with the presence of an IFN-induced transcriptional signature in CD16+ monocytes already at baseline. Consistent with this observation, we found that in vitro IFN-γ priming overcomes the defect in the IL-12 response of the CD16neg subset. In contrast, pretreatment with IFN-γ had only a minor effect on IL-12p40 secretion by the CD16+ population. Moreover, inhibition of the mTOR pathway also selectively increased the IL-12 response in CD16neg but not in CD16+ monocytes. We further demonstrate that in contrast to IFN-γ, IFN-α fails to promote IL-12 production by the CD16neg subset and blocks the effect of IFN-γ priming. Based on these observations, we propose that the acquisition of IL-12 responsiveness by peripheral blood monocyte subsets depends on extrinsic signals experienced during their developmental progression in vivo. This process can be overridden during inflammation by the opposing regulatory effects of type I and II IFN as well as the mTOR inhibition.


Subject(s)
Inflammation/immunology , Interleukin-12 Subunit p40/metabolism , Monocytes/immunology , Toxoplasma/physiology , Toxoplasmosis/immunology , Cell Differentiation , Cells, Cultured , Humans , Interferon-gamma/metabolism , Lipopolysaccharide Receptors/metabolism , Primary Cell Culture , Receptors, IgG/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Transcriptome
13.
J Transl Med ; 20(1): 551, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36447264

ABSTRACT

Chagas disease is a neglected tropical disease in Latin America and an imported emerging disease worldwide. Chronic Chagas disease cardiomyopathy (CCC) is the most prominent clinical form and can lead to heart failure, thromboembolism, and sudden death. While previous reports have supported a role for CD4+ T lymphocytes in the pathogenesis of CCC a comprehensive analysis of these cells during different clinical forms is lacking. Here, we used high-dimensional flow cytometry to assess the diversity of circulating CD4+ T cells in patients with distinct clinical forms. We found increased frequencies of CD4+CD69+ T cells in patients compared to controls. CD39+ regulatory T cells, represented by mesocluster 6 were reduced in mild CCC patients compared to controls. Cytotoxic CD4+ T cells co-expressing granzyme B and perforin were expanded in patients with Chagas disease and were higher in patients with mild CCC compared to controls. Furthermore, patients with mild CCC displayed higher frequencies of multifunctional effector memory CD4+ T cells. Our results demonstrate an expansion in activated CD4+ T cells and a decrease in a functional subset of regulatory T cells associated with the onset of Chagas cardiomyopathy, suggesting their role in the establishment of cardiac lesions and as potential biomarkers for disease aggravation.


Subject(s)
Cardiomyopathies , Chagas Disease , Heart Failure , Humans , Lymphocyte Count , T-Lymphocytes, Regulatory , Chagas Disease/complications
14.
J Gen Intern Med ; 37(13): 3310-3317, 2022 10.
Article in English | MEDLINE | ID: mdl-35018562

ABSTRACT

BACKGROUND: Approximately 20% of the US population live in states where MAiD is a legal, though highly contentious, practice. Little generalizable data exists on the experiences of MAiD providers who comprise a small, and intentionally hidden, population. OBJECTIVE: To examine the nature, extent, and consequences of physicians' participation in MAiD. DESIGN: An anonymous, multi-wave, mailed survey (RR= 55%). PARTICIPANTS: An enriched sample (n=583) of Colorado physicians caring for potential MAiD patients. MAIN MEASURES: Physician willingness, preparedness, and participation in a continuum of MAiD activities. Other outcomes include the effects of providing MAiD and the barriers physicians face related to MAiD. KEY RESULTS: Overall, 81.1% of respondents were willing to discuss MAiD with a patient, 88.3% to refer for MAiD, 46.3% to be a consultant, and 28.1% to be an attending. Fewer felt prepared to discuss MAiD (54.4%), provide a MAiD referral (62.8%), be a consultant (30.7%), or be an attending (18.0%). More than half of respondents (52.3%) had discussed MAiD with a patient, 27.3% provided a MAiD referral, 12.8% had been a MAiD consultant, and 8.5% had been a MAiD attending. Among MAiD consultants and attendings, 75% reported that their most recent MAiD case was emotionally fulfilling and professionally rewarding, though 75% also reported that it was time consuming and 46.9% reported that it was ethically challenging. Common barriers to physician participation in MAiD include lack of knowledge about MAiD (46.8%), the emotional (45.6%) and time (41.7%) investments, and ethical concerns (41.7%). CONCLUSIONS: Many physicians in our sample are both willing and prepared to discuss MAiD with patients and to provide MAiD referrals. Fewer are prepared and willing to serve as an attending or consultant and fewer have provided these services. MAID consultants and attendings largely report the experience to be emotionally fulfilling and professionally rewarding, but all respondents reported multiple barriers to participation.


Subject(s)
Physicians , Suicide, Assisted , Attitude of Health Personnel , Canada , Colorado , Humans , Physicians/psychology , Surveys and Questionnaires
15.
Immunity ; 38(1): 119-30, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23246311

ABSTRACT

Toll-like receptor 11 (TLR11) recognizes T. gondii profilin (TgPRF) and is required for interleukin-12 production and induction of immune responses that limit cyst burden in Toxoplasma gondii-infected mice. However, TLR11 only modestly affects survival of T. gondii-challenged mice. We report that TLR12, a previously uncharacterized TLR, also recognized TgPRF. TLR12 was sufficient for recognition of TgPRF by plasmacytoid dendritic cells (pDCs), whereas TLR11 and TLR12 were both required in macrophages and conventional DCs. In contrast to TLR11, TLR12-deficient mice succumb rapidly to T. gondii infection. TLR12-dependent induction of IL-12 and IFN-α in pDCs led to production of IFN-γ by NK cells. Consistent with this observation, the partial resistance of Tlr11(-/-) mice is lost upon pDC or NK cell depletion. Thus, TLR12 is critical for the innate immune response to T. gondii, and this TLR may promote host resistance by triggering pDC and NK cell function.


Subject(s)
Host-Pathogen Interactions/immunology , Profilins/metabolism , Toll-Like Receptors/metabolism , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/metabolism , Amino Acid Sequence , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Genetic Predisposition to Disease , Immunity, Innate , Interferon-alpha/biosynthesis , Interferon-gamma/biosynthesis , Interleukin-12/biosynthesis , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , Mice, Knockout , Molecular Sequence Data , NF-kappa B/metabolism , Profilins/immunology , Protein Binding , Protein Multimerization , Sequence Alignment , Toll-Like Receptors/chemistry , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Toxoplasmosis, Animal/genetics
16.
PLoS Pathog ; 15(6): e1007871, 2019 06.
Article in English | MEDLINE | ID: mdl-31226171

ABSTRACT

Infection of host cells by Toxoplasma gondii is an active process, which is regulated by secretion of microneme (MICs) and rhoptry proteins (ROPs and RONs) from specialized organelles in the apical pole of the parasite. MIC1, MIC4 and MIC6 assemble into an adhesin complex secreted on the parasite surface that functions to promote infection competency. MIC1 and MIC4 are known to bind terminal sialic acid residues and galactose residues, respectively and to induce IL-12 production from splenocytes. Here we show that rMIC1- and rMIC4-stimulated dendritic cells and macrophages produce proinflammatory cytokines, and they do so by engaging TLR2 and TLR4. This process depends on sugar recognition, since point mutations in the carbohydrate-recognition domains (CRD) of rMIC1 and rMIC4 inhibit innate immune cells activation. HEK cells transfected with TLR2 glycomutants were selectively unresponsive to MICs. Following in vitro infection, parasites lacking MIC1 or MIC4, as well as expressing MIC proteins with point mutations in their CRD, failed to induce wild-type (WT) levels of IL-12 secretion by innate immune cells. However, only MIC1 was shown to impact systemic levels of IL-12 and IFN-γ in vivo. Together, our data show that MIC1 and MIC4 interact physically with TLR2 and TLR4 N-glycans to trigger IL-12 responses, and MIC1 is playing a significant role in vivo by altering T. gondii infection competency and murine pathogenesis.


Subject(s)
Cell Adhesion Molecules/immunology , Dendritic Cells/immunology , Immunity, Innate , Macrophages/immunology , Protozoan Proteins/immunology , Sialic Acids/immunology , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/immunology , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology , Animals , Interleukin-12/immunology , Mice , Mice, Knockout , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics , Toxoplasmosis, Animal/genetics
17.
Immunity ; 37(4): 660-73, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23041064

ABSTRACT

T-bet is a critical transcription factor for T helper 1 (Th1) cell differentiation. To study the regulation and functions of T-bet, we developed a T-bet-ZsGreen reporter mouse strain. We determined that interleukin-12 (IL-12) and interferon-γ (IFN-γ) were redundant in inducing T-bet in mice infected with Toxoplasma gondii and that T-bet did not contribute to its own expression when induced by IL-12 and IFN-γ. By contrast, T-bet and the transcription factor Stat4 were critical for IFN-γ production whereas IFN-γ signaling was dispensable for inducing IFN-γ. Loss of T-bet resulted in activation of an endogenous program driving Th2 cell differentiation in cells expressing T-bet-ZsGreen. Genome-wide analyses indicated that T-bet directly induced many Th1 cell-related genes but indirectly suppressed Th2 cell-related genes. Our study revealed redundancy and synergy among several Th1 cell-inducing pathways in regulating the expression of T-bet and IFN-γ, and a critical role of T-bet in suppressing an endogenous Th2 cell-associated program.


Subject(s)
Signal Transduction , T-Box Domain Proteins/immunology , Th2 Cells/immunology , Animals , Cell Differentiation , GATA3 Transcription Factor/immunology , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-4/immunology , Mice , Mice, Knockout , STAT4 Transcription Factor/deficiency , STAT4 Transcription Factor/immunology , T-Box Domain Proteins/deficiency , Th1 Cells/immunology , Th2 Cells/cytology , Toxoplasma/immunology , Toxoplasmosis/immunology
18.
Nat Immunol ; 9(11): 1279-87, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18806793

ABSTRACT

Mice deficient in the interferon-gamma (IFN-gamma)-inducible, immunity-related GTPase Irgm1 have defective host resistance to a variety of intracellular pathogens. This greater susceptibility to infection is associated with impaired IFN-gamma-dependent macrophage microbicidal activity in vitro. Here we show that Irgm1 also regulated the survival of mature effector CD4(+) T lymphocytes by protecting them from IFN-gamma-induced autophagic cell death. Mice deficient in both IFN-gamma and Irgm1 were 'rescued' from the lymphocyte depletion and greater mortality that occurs in mice singly deficient in Irgm1 after mycobacterial infection. Our studies identify a feedback mechanism in the T helper type 1 response that limits the detrimental effects of IFN-gamma on effector T lymphocyte survival while promoting the antimicrobial functions of IFN-gamma.


Subject(s)
Autophagy , CD4-Positive T-Lymphocytes/immunology , GTP-Binding Proteins/immunology , Interferon-gamma/immunology , Animals , Autophagy/genetics , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/ultrastructure , Cell Proliferation , Cell Survival , Cells, Cultured , Female , GTP-Binding Proteins/genetics , Interferon-gamma/genetics , Interferon-gamma/pharmacology , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium avium/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , Toxoplasma/immunology , Toxoplasmosis/immunology , Tuberculosis/immunology
19.
Immunity ; 35(6): 919-31, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22195747

ABSTRACT

Follicular helper T (Tfh) cells comprise an important subset of helper T cells; however, their relationship with other helper lineages is incompletely understood. Herein, we showed interleukin-12 acting via the transcription factor STAT4 induced both Il21 and Bcl6 genes, generating cells with features of both Tfh and Th1 cells. However, STAT4 also induced the transcription factor T-bet. With ChIP-seq, we defined the genome-wide targets of T-bet and found that it repressed Bcl6 and other markers of Tfh cells, thereby attenuating the nascent Tfh cell-like phenotype in the late phase of Th1 cell specification. Tfh-like cells were rapidly generated after Toxoplasma gondii infection in mice, but T-bet constrained Tfh cell expansion and consequent germinal center formation and antibody production. Our data argue that Tfh and Th1 cells share a transitional stage through the signal mediated by STAT4, which promotes both phenotypes. However, T-bet represses Tfh cell functionalities, promoting full Th1 cell differentiation.


Subject(s)
Cell Differentiation , Th1 Cells/cytology , Th1 Cells/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/parasitology , DNA-Binding Proteins/genetics , Gene Expression Regulation/drug effects , Immunophenotyping , Interferon-gamma/metabolism , Interleukin-12/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-bcl-6 , STAT4 Transcription Factor/metabolism , T-Box Domain Proteins/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Th1 Cells/metabolism , Toxoplasma
20.
PLoS Pathog ; 13(7): e1006484, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28700710

ABSTRACT

Although the importance of humoral immunity to malaria has been established, factors that control antibody production are poorly understood. Follicular helper T cells (Tfh cells) are pivotal for generating high-affinity, long-lived antibody responses. While it has been proposed that expansion of antigen-specific Tfh cells, interleukin (IL) 21 production and robust germinal center formation are associated with protection against malaria in mice, whether Tfh cells are found during Plasmodium vivax (P. vivax) infection and if they play a role during disease remains unknown. Our goal was to define the role of Tfh cells during P. vivax malaria. We demonstrate that P. vivax infection triggers IL-21 production and an increase in Tfh cells (PD-1+ICOS+CXCR5+CD45RO+CD4+CD3+). As expected, FACS-sorted Tfh cells, the primary source of IL-21, induced immunoglobulin production by purified naïve B cells. Furthermore, we found that P. vivax infection alters the B cell compartment and these alterations were dependent on the number of previous infections. First exposure leads to increased proportions of activated and atypical memory B cells and decreased frequencies of classical memory B cells, whereas patients that experienced multiple episodes displayed lower proportions of atypical B cells and higher frequencies of classical memory B cells. Despite the limited sample size, but consistent with the latter finding, the data suggest that patients who had more than five infections harbored more Tfh cells and produce more specific antibodies. P. vivax infection triggers IL-21 production by Tfh that impact B cell responses in humans.


Subject(s)
Antibodies, Protozoan/immunology , B-Lymphocytes/immunology , Malaria, Vivax/immunology , Plasmodium vivax/physiology , T-Lymphocytes, Helper-Inducer/immunology , Adolescent , Adult , Animals , Female , Humans , Lymphocyte Activation , Malaria, Vivax/parasitology , Male , Mice , Middle Aged , Plasmodium vivax/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL