Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Mol Psychiatry ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553539

ABSTRACT

Recurrences of depressive episodes in major depressive disorder (MDD) can be explained by the diathesis-stress model, suggesting that stressful life events (SLEs) can trigger MDD episodes in individuals with pre-existing vulnerabilities. However, the longitudinal neurobiological impact of SLEs on gray matter volume (GMV) in MDD and its interaction with early-life adversity remains unresolved. In 754 participants aged 18-65 years (362 MDD patients; 392 healthy controls; HCs), we assessed longitudinal associations between SLEs (Life Events Questionnaire) and whole-brain GMV changes (3 Tesla MRI) during a 2-year interval, using voxel-based morphometry in SPM12/CAT12. We also explored the potential moderating role of childhood maltreatment (Childhood Trauma Questionnaire) on these associations. Over the 2-year interval, HCs demonstrated significant GMV reductions in the middle frontal, precentral, and postcentral gyri in response to higher levels of SLEs, while MDD patients showed no such GMV changes. Childhood maltreatment did not moderate these associations in either group. However, MDD patients who had at least one depressive episode during the 2-year interval, compared to those who did not, or HCs, showed GMV increases in the middle frontal, precentral, and postcentral gyri associated with an increase in SLEs and childhood maltreatment. Our findings indicate distinct GMV changes in response to SLEs between MDD patients and HCs. GMV decreases in HCs may represent adaptive responses to stress, whereas GMV increases in MDD patients with both childhood maltreatment and a depressive episode during the 2-year interval may indicate maladaptive changes, suggesting a neural foundation for the diathesis-stress model in MDD recurrences.

2.
Mol Psychiatry ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693319

ABSTRACT

Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.

3.
Hum Brain Mapp ; 45(8): e26682, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38825977

ABSTRACT

Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.


Subject(s)
Bipolar Disorder , Magnetic Resonance Imaging , Obesity , Principal Component Analysis , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/drug therapy , Bipolar Disorder/pathology , Adult , Female , Male , Magnetic Resonance Imaging/methods , Middle Aged , Obesity/diagnostic imaging , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Schizophrenia/drug therapy , Schizophrenia/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cluster Analysis , Young Adult , Brain/diagnostic imaging , Brain/pathology
4.
Psychol Med ; : 1-11, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801091

ABSTRACT

BACKGROUND: Individuals at risk for bipolar disorder (BD) have a wide range of genetic and non-genetic risk factors, like a positive family history of BD or (sub)threshold affective symptoms. Yet, it is unclear whether these individuals at risk and those diagnosed with BD share similar gray matter brain alterations. METHODS: In 410 male and female participants aged 17-35 years, we compared gray matter volume (3T MRI) between individuals at risk for BD (as assessed using the EPIbipolar scale; n = 208), patients with a DSM-IV-TR diagnosis of BD (n = 87), and healthy controls (n = 115) using voxel-based morphometry in SPM12/CAT12. We applied conjunction analyses to identify similarities in gray matter volume alterations in individuals at risk and BD patients, relative to healthy controls. We also performed exploratory whole-brain analyses to identify differences in gray matter volume among groups. ComBat was used to harmonize imaging data from seven sites. RESULTS: Both individuals at risk and BD patients showed larger volumes in the right putamen than healthy controls. Furthermore, individuals at risk had smaller volumes in the right inferior occipital gyrus, and BD patients had larger volumes in the left precuneus, compared to healthy controls. These findings were independent of course of illness (number of lifetime manic and depressive episodes, number of hospitalizations), comorbid diagnoses (major depressive disorder, attention-deficit hyperactivity disorder, anxiety disorder, eating disorder), familial risk, current disease severity (global functioning, remission status), and current medication intake. CONCLUSIONS: Our findings indicate that alterations in the right putamen might constitute a vulnerability marker for BD.

5.
Article in English | MEDLINE | ID: mdl-38914850

ABSTRACT

While most people are right-handed, a minority are left-handed or mixed-handed. It has been suggested that mental and developmental disorders are associated with increased prevalence of left-handedness and mixed-handedness. However, substantial heterogeneity exists across disorders, indicating that not all disorders are associated with a considerable shift away from right-handedness. Increased frequencies in left- and mixed-handedness have also been associated with more severe clinical symptoms, indicating that symptom severity rather than diagnosis explains the high prevalence of non-right-handedness in mental disorders. To address this issue, the present study investigated the association between handedness and measures of stress reactivity, depression, mania, anxiety, and positive and negative symptoms in a large sample of 994 healthy controls and 1213 patients with DSM IV affective disorders, schizoaffective disorders, or schizophrenia. A series of complementary analyses revealed lower lateralization and a higher percentage of mixed-handedness in patients with major depression (14.9%) and schizophrenia (24.0%) compared to healthy controls (12%). For patients with schizophrenia, higher symptom severity was associated with an increasing tendency towards left-handedness. No associations were found for patients diagnosed with major depression, bipolar disorder, or schizoaffective disorder. In healthy controls, no association between hand preference and symptoms was evident. Taken together, these findings suggest that both diagnosis and symptom severity are relevant for the shift away from right-handedness in mental disorders like schizophrenia and major depression.

7.
Front Psychiatry ; 15: 1375751, 2024.
Article in English | MEDLINE | ID: mdl-38938460

ABSTRACT

Background: Individuals with anxiety disorders (ADs) often display hypervigilance to threat information, although this response may be less pronounced following psychotherapy. This study aims to investigate the unconscious recognition performance of facial expressions in patients with panic disorder (PD) post-treatment, shedding light on alterations in their emotional processing biases. Methods: Patients with PD (n=34) after (exposure-based) cognitive behavior therapy and healthy controls (n=43) performed a subliminal affective recognition task. Emotional facial expressions (fearful, happy, or mirrored) were displayed for 33 ms and backwardly masked by a neutral face. Participants completed a forced choice task to discriminate the briefly presented facial stimulus and an uncovered condition where only the neutral mask was shown. We conducted a secondary analysis to compare groups based on their four possible response types under the four stimulus conditions and examined the correlation of the false alarm rate for fear responses to non-fearful (happy, mirrored, and uncovered) stimuli with clinical anxiety symptoms. Results: The patient group showed a unique selection pattern in response to happy expressions, with significantly more correct "happy" responses compared to controls. Additionally, lower severity of anxiety symptoms after psychotherapy was associated with a decreased false fear response rate with non-threat presentations. Conclusion: These data suggest that patients with PD exhibited a "happy-face recognition advantage" after psychotherapy. Less symptoms after treatment were related to a reduced fear bias. Thus, a differential facial emotion detection task could be a suitable tool to monitor response patterns and biases in individuals with ADs in the context of psychotherapy.

8.
J Affect Disord ; 355: 12-21, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38548192

ABSTRACT

BACKGROUND: Depressive symptoms seem to be interrelated in a complex and self-reinforcing way. To gain a better understanding of this complexity, the inclusion of theoretically relevant constructs (such as risk and protective factors) offers a comprehensive view into the complex mechanisms underlying depression. METHODS: Cross-sectional data from individuals diagnosed with a major depressive disorder (N = 986) and healthy controls (N = 1049) were analyzed. Participants self-reported their depressive symptoms, as well as several risk factors and protective factors. Regularized partial correlation networks were estimated for each group and compared using a network comparison test. RESULTS: Symptoms of depression were more strongly connected in the network of depressed patients than in healthy controls. Among the risk factors, perceived stress, the experience of negative life events, emotional neglect, and emotional abuse were the most centrally embedded in both networks. However, the centrality of risk factors did not significantly differ between the two groups. Among the protective factors, social support, personal competence, and acceptance were the most central in both networks, where the latter was significantly more strongly associated with the symptom of self-hate in depressed patients. CONCLUSION: The network analysis revealed that key symptoms of depression were more strongly connected for depressed patients than for healthy controls, and that risk and protective factors play an important role, particularly perceived stress in both groups and an accepting attitude for depressed patients. However, the purpose of this study is hypothesis generating and assisting in the potential selection of non-symptom nodes for future research.


Subject(s)
Depression , Depressive Disorder, Major , Humans , Depression/etiology , Depressive Disorder, Major/epidemiology , Protective Factors , Cross-Sectional Studies , Self Report
9.
JAMA Psychiatry ; 81(4): 386-395, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38198165

ABSTRACT

Importance: Biological psychiatry aims to understand mental disorders in terms of altered neurobiological pathways. However, for one of the most prevalent and disabling mental disorders, major depressive disorder (MDD), no informative biomarkers have been identified. Objective: To evaluate whether machine learning (ML) can identify a multivariate biomarker for MDD. Design, Setting, and Participants: This study used data from the Marburg-Münster Affective Disorders Cohort Study, a case-control clinical neuroimaging study. Patients with acute or lifetime MDD and healthy controls aged 18 to 65 years were recruited from primary care and the general population in Münster and Marburg, Germany, from September 11, 2014, to September 26, 2018. The Münster Neuroimaging Cohort (MNC) was used as an independent partial replication sample. Data were analyzed from April 2022 to June 2023. Exposure: Patients with MDD and healthy controls. Main Outcome and Measure: Diagnostic classification accuracy was quantified on an individual level using an extensive ML-based multivariate approach across a comprehensive range of neuroimaging modalities, including structural and functional magnetic resonance imaging and diffusion tensor imaging as well as a polygenic risk score for depression. Results: Of 1801 included participants, 1162 (64.5%) were female, and the mean (SD) age was 36.1 (13.1) years. There were a total of 856 patients with MDD (47.5%) and 945 healthy controls (52.5%). The MNC replication sample included 1198 individuals (362 with MDD [30.1%] and 836 healthy controls [69.9%]). Training and testing a total of 4 million ML models, mean (SD) accuracies for diagnostic classification ranged between 48.1% (3.6%) and 62.0% (4.8%). Integrating neuroimaging modalities and stratifying individuals based on age, sex, treatment, or remission status does not enhance model performance. Findings were replicated within study sites and also observed in structural magnetic resonance imaging within MNC. Under simulated conditions of perfect reliability, performance did not significantly improve. Analyzing model errors suggests that symptom severity could be a potential focus for identifying MDD subgroups. Conclusion and Relevance: Despite the improved predictive capability of multivariate compared with univariate neuroimaging markers, no informative individual-level MDD biomarker-even under extensive ML optimization in a large sample of diagnosed patients-could be identified.


Subject(s)
Depressive Disorder, Major , Humans , Female , Male , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/pathology , Diffusion Tensor Imaging , Cohort Studies , Reproducibility of Results , Magnetic Resonance Imaging , Biomarkers
10.
Neuropsychopharmacology ; 49(5): 814-823, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38332015

ABSTRACT

Patients with bipolar disorder (BD) show alterations in both gray matter volume (GMV) and white matter (WM) integrity compared with healthy controls (HC). However, it remains unclear whether the phenotypically distinct BD subtypes (BD-I and BD-II) also exhibit brain structural differences. This study investigated GMV and WM differences between HC, BD-I, and BD-II, along with clinical and genetic associations. N = 73 BD-I, n = 63 BD-II patients and n = 136 matched HC were included. Using voxel-based morphometry and tract-based spatial statistics, main effects of group in GMV and fractional anisotropy (FA) were analyzed. Associations between clinical and genetic features and GMV or FA were calculated using regression models. For FA but not GMV, we found significant differences between groups. BD-I patients showed lower FA compared with BD-II patients (ptfce-FWE = 0.006), primarily in the anterior corpus callosum. Compared with HC, BD-I patients exhibited lower FA in widespread clusters (ptfce-FWE < 0.001), including almost all major projection, association, and commissural fiber tracts. BD-II patients also demonstrated lower FA compared with HC, although less pronounced (ptfce-FWE = 0.049). The results remained unchanged after controlling for clinical and genetic features, for which no independent associations with FA or GMV emerged. Our findings suggest that, at a neurobiological level, BD subtypes may reflect distinct degrees of disease expression, with increasing WM microstructure disruption from BD-II to BD-I. This differential magnitude of microstructural alterations was not clearly linked to clinical and genetic variables. These findings should be considered when discussing the classification of BD subtypes within the spectrum of affective disorders.


Subject(s)
Bipolar Disorder , White Matter , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/genetics , Gray Matter/diagnostic imaging , Brain , White Matter/diagnostic imaging , Cerebral Cortex , Anisotropy
11.
Am J Psychiatry ; 181(8): 728-740, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38859702

ABSTRACT

OBJECTIVE: Specific phobia is a common anxiety disorder, but the literature on associated brain structure alterations exhibits substantial gaps. The ENIGMA Anxiety Working Group examined brain structure differences between individuals with specific phobias and healthy control subjects as well as between the animal and blood-injection-injury (BII) subtypes of specific phobia. Additionally, the authors investigated associations of brain structure with symptom severity and age (youths vs. adults). METHODS: Data sets from 31 original studies were combined to create a final sample with 1,452 participants with phobia and 2,991 healthy participants (62.7% female; ages 5-90). Imaging processing and quality control were performed using established ENIGMA protocols. Subcortical volumes as well as cortical surface area and thickness were examined in a preregistered analysis. RESULTS: Compared with the healthy control group, the phobia group showed mostly smaller subcortical volumes, mixed surface differences, and larger cortical thickness across a substantial number of regions. The phobia subgroups also showed differences, including, as hypothesized, larger medial orbitofrontal cortex thickness in BII phobia (N=182) compared with animal phobia (N=739). All findings were driven by adult participants; no significant results were observed in children and adolescents. CONCLUSIONS: Brain alterations associated with specific phobia exceeded those of other anxiety disorders in comparable analyses in extent and effect size and were not limited to reductions in brain structure. Moreover, phenomenological differences between phobia subgroups were reflected in diverging neural underpinnings, including brain areas related to fear processing and higher cognitive processes. The findings implicate brain structure alterations in specific phobia, although subcortical alterations in particular may also relate to broader internalizing psychopathology.


Subject(s)
Magnetic Resonance Imaging , Phobic Disorders , Humans , Phobic Disorders/pathology , Adult , Female , Male , Child , Adolescent , Young Adult , Middle Aged , Brain/pathology , Brain/diagnostic imaging , Aged , Child, Preschool , Aged, 80 and over , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging , Animals , Case-Control Studies
12.
Article in English | WPRIM | ID: wpr-6790

ABSTRACT

Convincing evidence suggests that females and males are different in regard to susceptibility to both infectious and non-infectious diseases. Sex and gender influences the severity and outcome of several infectious diseases, including leptospirosis, tuberculosis, listeriosis, Q fever, avian influenza and SARS.

SELECTION OF CITATIONS
SEARCH DETAIL