Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Transl Med ; 21(1): 160, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36855159

ABSTRACT

BACKGROUND: Recent studies have shown the implication of the ROBO-SLIT pathway in heart development. Within this study, we aimed to further assess the implication of the ROBO and SLIT genes mainly in bicuspid aortic valve (BAV) and other human congenital heart defects (CHD). METHODS: We have analyzed a cohort of singleton exome sequencing data comprising 40 adult BAV patients, 20 pediatric BAV patients generated by the Pediatric Cardiac Genomics Consortium, 10 pediatric cases with tetralogy of Fallot (ToF), and one case with coarctation of the aorta. A gene-centered analysis of data was performed. To further advance the interpretation of the variants, we intended to combine more than 5 prediction tools comprising the assessment of protein structure and stability. RESULTS: A total of 24 variants were identified. Only 4 adult BAV patients (10%) had missense variants in the ROBO and SLIT genes. In contrast, 19 pediatric cases carried variants in ROBO or SLIT genes (61%). Three BAV patients with a severe phenotype were digenic. Segregation analysis was possible for two BAV patients. For the homozygous ROBO4: p.(Arg776Cys) variant, family segregation was consistent with an autosomal recessive pattern of inheritance. The ROBO4: c.3001 + 3G > A variant segregates with the affected family members. Interestingly, these variants were also found in two unrelated patients with ToF highlighting that the same variant in the ROBO4 gene may underlie different cardiac phenotypes affecting the outflow tract development. CONCLUSION: Our results further reinforce the implication of the ROBO4 gene not only in BAV but also in ToF hence the importance of its inclusion in clinical genetic testing. The remaining ROBO and SLIT genes may be screened in patients with negative or inconclusive genetic tests.


Subject(s)
Heart Defects, Congenital , Tetralogy of Fallot , Adult , Humans , Child , Heart Defects, Congenital/genetics , Genetic Testing , Phenomics , Heart
2.
Am J Respir Crit Care Med ; 206(1): 56-69, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35417304

ABSTRACT

Rationale: Genetic studies of idiopathic pulmonary fibrosis (IPF) have improved our understanding of this disease, but not all causal loci have been identified. Objectives: To identify genes enriched with rare deleterious variants in IPF and familial pulmonary fibrosis. Methods: We performed gene burden analysis of whole-exome data, tested single variants for disease association, conducted KIF15 (kinesin family member 15) functional studies, and examined human lung single-cell RNA sequencing data. Measurements and Main Results: Gene burden analysis of 1,725 cases and 23,509 control subjects identified heterozygous rare deleterious variants in KIF15, a kinesin involved in spindle separation during mitosis, and three telomere-related genes (TERT [telomerase reverse transcriptase], RTEL1 [regulator of telomere elongation helicase 1], and PARN [poly(A)-specific ribonuclease]). KIF15 was implicated in autosomal-dominant models of rare deleterious variants (odds ratio [OR], 4.9; 95% confidence interval [CI], 2.7-8.8; P = 2.55 × 10-7) and rare protein-truncating variants (OR, 7.6; 95% CI, 3.3-17.1; P = 8.12 × 10-7). Meta-analyses of the discovery and replication cohorts, including 2,966 cases and 29,817 control subjects, confirm the involvement of KIF15 plus the three telomere-related genes. A common variant within a KIF15 intron (rs74341405; OR, 1.6; 95% CI, 1.4-1.9; P = 5.63 × 10-10) is associated with IPF risk, confirming a prior report. Lymphoblastoid cells from individuals heterozygous for the common variant have decreased KIF15 and reduced rates of cell growth. Cell proliferation is dependent on KIF15 in the presence of an inhibitor of Eg5/KIF11, which has partially redundant function. KIF15 is expressed specifically in replicating human lung cells and shows diminished expression in replicating epithelial cells of patients with IPF. Conclusions: Both rare deleterious variants and common variants in KIF15 link a nontelomerase pathway of cell proliferation with IPF susceptibility.


Subject(s)
Idiopathic Pulmonary Fibrosis , Kinesins , Telomerase , Exome , Humans , Idiopathic Pulmonary Fibrosis/genetics , Kinesins/genetics , Telomerase/genetics , Telomere
3.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834774

ABSTRACT

Calcium (Ca2+) is the major mediator of cardiac contractile function. It plays a key role in regulating excitation-contraction coupling and modulating the systolic and diastolic phases. Defective handling of intracellular Ca2+ can cause different types of cardiac dysfunction. Thus, the remodeling of Ca2+ handling has been proposed to be a part of the pathological mechanism leading to electrical and structural heart diseases. Indeed, to ensure appropriate electrical cardiac conduction and contraction, Ca2+ levels are regulated by several Ca2+-related proteins. This review focuses on the genetic etiology of cardiac diseases related to calcium mishandling. We will approach the subject by focalizing on two clinical entities: catecholaminergic polymorphic ventricular tachycardia (CPVT) as a cardiac channelopathy and hypertrophic cardiomyopathy (HCM) as a primary cardiomyopathy. Further, this review will illustrate the fact that despite the genetic and allelic heterogeneity of cardiac defects, calcium-handling perturbations are the common pathophysiological mechanism. The newly identified calcium-related genes and the genetic overlap between the associated heart diseases are also discussed in this review.


Subject(s)
Cardiomyopathy, Hypertrophic , Heart Diseases , Tachycardia, Ventricular , Humans , Calcium/metabolism , Myocytes, Cardiac/metabolism , Tachycardia, Ventricular/genetics , Heart Diseases/metabolism , Cardiomyopathy, Hypertrophic/metabolism , Calcium, Dietary/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism
4.
J Hum Genet ; 67(9): 515-518, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35534675

ABSTRACT

Bicuspid aortic valve (BAV) is the most common congenital heart defect with a high index of heritability. Patients with BAV have different clinical courses and disease progression. Herein, we report three siblings with BAV and clinical differences. Their clinical presentations include moderate to severe aortic regurgitation, aortic stenosis, and ascending aortic aneurysm. Genetic investigation was carried out using Whole-Exome Sequencing for the three patients. We identified two non-synonymous variants in ROBO1 and GATA5 genes. The ROBO1: p.(Ser327Pro) variant is shared by the three BAV-affected siblings. The GATA5: p.(Gln3Arg) variant is shared only by the two brothers who presented BAV and ascending aortic aneurysm. Their sister, affected by BAV without aneurysm, does not harbor the GATA5: p.(Gln3Arg) variant. Both variants were absent in the patients' fourth brother who is clinically healthy with tricuspid aortic valve. To our knowledge, this is the first association of ROBO1 and GATA5 variants in familial BAV with a potential genotype-phenotype correlation. Our findings are suggestive of the implication of ROBO1 gene in BAV and the GATA5: p.(Gln3Arg) variant in ascending aortic aneurysm. Our family-based study further confirms the intrafamilial incomplete penetrance of BAV and the complex pattern of inheritance of the disease.


Subject(s)
Bicuspid Aortic Valve Disease , GATA5 Transcription Factor , Nerve Tissue Proteins , Receptors, Immunologic , Aortic Valve/abnormalities , Bicuspid Aortic Valve Disease/genetics , Female , GATA5 Transcription Factor/genetics , Humans , Male , Nerve Tissue Proteins/genetics , Receptors, Immunologic/genetics , Roundabout Proteins
5.
Int J Mol Sci ; 23(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35563595

ABSTRACT

Left Ventricular Non-Compaction (LVNC) is defined by the triad prominent myocardial trabecular meshwork, thin compacted layer, and deep intertrabecular recesses. LVNC associated with dilation is characterized by the coexistence of left ventricular dilation and systolic dysfunction. Pediatric cases with dilated-LVNC have worse outcomes than those with isolated dilated cardiomyopathy and adult patients. Herein, we report a clinical and genetic investigation using trio-based whole-exome sequencing of a pediatric case with early-onset dilated-LVNC. Compound heterozygous mutations were identified in the Striated Muscle Enriched Protein Kinase (SPEG) gene, a key regulator of cardiac calcium homeostasis. A paternally inherited mutation: SPEG; p.(Arg2470Ser) and the second variant, SPEG; p.(Pro2687Thr), is common and occurred de novo. Subsequently, Sanger sequencing was performed for the family in order to segregate the variants. Thus, the index case, his father, and both sisters carried the SPEG: p.(Arg2470Ser) variant. Only the index patient carried both SPEG variants. Both sisters, as well as the patient's father, showed LVNC without cardiac dysfunction. The unaffected mother did not harbor any of the variants. The in silico analysis of the identified variants (rare and common) showed a decrease in protein stability with alterations of the physical properties as well as high conservation scores for the mutated residues. Interestingly, using the Project HOPE tool, the SPEG; p.(Pro2687Thr) variant is predicted to disturb the second fibronectin type III domain of the protein and may abolish its function. To our knowledge, the present case is the first description of compound heterozygous SPEG mutations involving a de novo variant and causing dilated-LVNC without neuropathy or centronuclear myopathy.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Myopathies, Structural, Congenital , Adult , Cardiomyopathies/genetics , Cardiomyopathy, Dilated/genetics , Child , Heart , Heart Ventricles , Humans , Muscle Proteins/genetics , Myopathies, Structural, Congenital/genetics , Protein Serine-Threonine Kinases
6.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430924

ABSTRACT

Mitral valve prolapse (MVP) is a common valvular heart defect with variable outcomes. Several studies reported MVP as an underestimated cause of life-threatening arrhythmias and sudden cardiac death (SCD), mostly in young adult women. Herein, we report a clinical and genetic investigation of a family with bileaflet MVP and a history of syncopes and resuscitated sudden cardiac death. Using family based whole exome sequencing, we identified two missense variants in the SCN5A gene. A rare variant SCN5A:p.Ala572Asp and the well-known functional SCN5A:p.His558Arg polymorphism. Both variants are shared between the mother and her daughter with a history of resuscitated SCD and syncopes, respectively. The second daughter with prodromal MVP as well as her healthy father and sister carried only the SCN5A:p.His558Arg polymorphism. Our study is highly suggestive of the contribution of SCN5A mutations as the potential genetic cause of the electric instability leading to ventricular arrhythmias in familial MVP cases with syncope and/or SCD history.


Subject(s)
Mitral Valve Prolapse , Humans , Young Adult , Female , Mitral Valve Prolapse/genetics , Mitral Valve Prolapse/complications , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/complications , Death, Sudden, Cardiac/etiology , Syncope/complications
7.
Herz ; 46(Suppl 1): 94-102, 2021 Apr.
Article in English | MEDLINE | ID: mdl-31970460

ABSTRACT

Unexplained sudden death in the young is cardiovascular in most cases. Structural and conduction defects in cardiac-related genes can conspire to underlie sudden cardiac death. Here we report a clinical investigation and an extensive genetic assessment of a Tunisian family with sudden cardiac death in young members. In order to identify the family-genetic basis of sudden cardiac death, we performed Whole Exome Sequencing (WES), read depth copy-number-variation (CNV) screening and segregation analysis. We identify 6 ultra-rare pathogenic heterozygous variants in OBSCN, RYR2, DSC2, AKAP9, CACNA1C and RBM20 genes, and one homozygous splicing variant in TECRL gene consistent with an oligogenic model of inheritance. CNV analysis did not reveal any causative CNV consistent with the family phenotype. Overall, our results are highly suggestive for a cumulative effect of heterozygous missense variants as disease causation and to account for a greater disease severity among offspring. Our study further confirms the complexity of the inheritance of sudden cardiac death and highlights the utility of family-based WES and segregation analysis in the identification of family specific mutations within different cardiac genes pathways.


Subject(s)
Death, Sudden, Cardiac , Heart , Death, Sudden, Cardiac/etiology , Humans , Mutation , Phenotype
8.
Genet Res (Camb) ; 101: e6, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31030682

ABSTRACT

Noonan syndrome and related disorders are a group of clinically and genetically heterogeneous conditions caused by mutations in genes of the RAS/MAPK pathway. Noonan syndrome causes multiple congenital anomalies, which are frequently accompanied by hypertrophic cardiomyopathy (HCM). We report here a Tunisian patient with a severe phenotype of Noonan syndrome including neonatal HCM, facial dysmorphism, severe failure to thrive, cutaneous abnormalities, pectus excavatum and severe stunted growth, who died in her eighth month of life. Using whole exome sequencing, we identified a de novo mutation in exon 7 of the RAF1 gene: c.776C > A (p.Ser259Tyr). This mutation affects a highly conserved serine residue, a main mediator of Raf-1 inhibition via phosphorylation. To our knowledge the c.776C > A mutation has been previously reported in only one case with prenatally diagnosed Noonan syndrome. Our study further supports the striking correlation of RAF1 mutations with HCM and highlights the clinical severity of Noonan syndrome associated with a RAF1 p.Ser259Tyr mutation.


Subject(s)
Cardiomyopathy, Hypertrophic/physiopathology , Noonan Syndrome/physiopathology , Proto-Oncogene Proteins c-raf/genetics , Cardiomyopathy, Hypertrophic/genetics , Female , Humans , Infant , Mutation , Noonan Syndrome/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-raf/metabolism , Tunisia
9.
J Hum Genet ; 63(10): 1077-1082, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30046096

ABSTRACT

Pediatric cardiomyopathy is a complex disease with clinical and genetic heterogeneity. Recently, the ALPK3 gene was described as a new hereditary cardiomyopathy gene underlying pediatric cardiomyopathies. Only eight patients carrying mutations in ALPK3 have been reported to date. Here, we report a 3-year-old male patient with both hypertrophic and dilated cardiomyopathy. The patient presented dysmorphic features and skeletal deformities of hands and feet, pectus excavatum, and cleft palate. The genetic investigation was performed by whole-exome sequencing in the patient and his parents. We identified a novel homozygous mutation in ALPK3 (c.1531_1532delAA; p.Lys511Argfs*12). Our work extends the phenotypic spectrum of the ALPK3-associated cardiomyopathy by reporting additional clinical features. This is the first study of a Tunisian patient with mutation in the ALPK3 gene. In conclusion, ALPK3 should be included in the list of genes to be considered in genetic studies for patients affected with pediatric syndromic cardiomyopathy.


Subject(s)
Cardiomyopathy, Dilated/genetics , Homozygote , Muscle Proteins/genetics , Mutation , Protein Kinases/genetics , Adult , Cardiomyopathy, Dilated/diagnostic imaging , Child, Preschool , Female , Humans , Male , Tunisia
11.
Mol Genet Genomic Med ; 12(6): e2486, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924380

ABSTRACT

BACKGROUND: Dilated cardiomyopathy (DCM) is characterized by dilatation of the left ventricle, systolic dysfunction, and normal or reduced thickness of the left ventricular wall. It is a leading cause of heart failure and cardiac death at a young age. Cases with neonatal onset DCM were correlated with severe clinical presentation and poor prognosis. A monogenic molecular etiology accounts for nearly half of cases. FAMILY DESCRIPTION: Here, we report a family with three deceased offspring at the age of 1 year old. The autopsy of the first deceased infant revealed a DCM. The second infant presented a DCM phenotype with a severely reduced Left Ventricular Ejection Fraction (LVEF) of 10%. Similarly, the third infant showed a severe DCM phenotype with LVEF of 30% as well, in addition to eccentric mitral insufficiency. RESULTS: Exome sequencing was performed for the trio (the second deceased infant and her parents). Data analysis following the autosomal dominant and recessive patterns of inheritance was carried out along with a mitochondrial pathways-based analysis. We identified a homozygous frameshift variant in the TNNI3 gene (c.204delG; p.(Arg69AlafsTer8)). This variant has been recently reported in the ClinVar database in association with cardiac phenotypes as pathogenic or likely pathogenic and classified as pathogenic according to ACMG. CONCLUSION: Genetic counseling was provided for the family and a prenatal diagnosis of choronic villus was proposed in the absence of pre-implantation genetic diagnosis possibilities. Our study expands the case series of early-onset DCM patients with a protein-truncating variant in the TNNI3 gene by reporting three affected infant siblings.


Subject(s)
Cardiomyopathy, Dilated , Consanguinity , Frameshift Mutation , Homozygote , Pedigree , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Female , Male , Infant , Phenotype , Troponin I
12.
Front Genet ; 15: 1384094, 2024.
Article in English | MEDLINE | ID: mdl-38711914

ABSTRACT

Hearing impairment (HI) is a prevalent neurosensory condition globally, impacting 5% of the population, with over 50% of congenital cases attributed to genetic etiologies. In Tunisia, HI underdiagnosis prevails, primarily due to limited access to comprehensive clinical tools, particularly for syndromic deafness (SD), characterized by clinical and genetic heterogeneity. This study aimed to uncover the SD spectrum through a 14-year investigation of a Tunisian cohort encompassing over 700 patients from four referral centers (2007-2021). Employing Sanger sequencing, Targeted Panel Gene Sequencing, and Whole Exome Sequencing, genetic analysis in 30 SD patients identified diagnoses such as Usher syndrome, Waardenburg syndrome, cranio-facial-hand-deafness syndrome, and H syndrome. This latter is a rare genodermatosis characterized by HI, hyperpigmentation, hypertrichosis, and systemic manifestations. A meta-analysis integrating our findings with existing data revealed that nearly 50% of Tunisian SD cases corresponded to rare inherited metabolic disorders. Distinguishing between non-syndromic and syndromic HI poses a challenge, where the age of onset and progression of features significantly impact accurate diagnoses. Despite advancements in local genetic characterization capabilities, certain ultra-rare forms of SD remain underdiagnosed. This research contributes critical insights to inform molecular diagnosis approaches for SD in Tunisia and the broader North-African region, thereby facilitating informed decision-making in clinical practice.

13.
Mol Med Rep ; 27(3)2023 Mar.
Article in English | MEDLINE | ID: mdl-36734258

ABSTRACT

The HOXA genes cluster plays a key role in embryologic development. Mutations in HOXA genes have been linked to different human phenotypes, including developmental delay, limb anomalies, and urogenital malformations. The present study reported a clinical and genetic investigation of a female patient with polymalformative syndrome including left arm agenesis, bicornuate uterus and bicuspid aortic valve. Using whole exome sequencing, two heterozygous missense variants were identified. Of these, one was a novel variant in the HOXA13 gene [p.(Tyr290Ser)] and the second a heterozygous variant in the HOXA9 gene [p.(Ala102Pro)]. To the best of our knowledge, this is the first association of HOXA9/HOXA13 point mutations linked to a syndromic case. In conclusion, the present study suggested that the phenotypic spectrum of vertebral anomalies, anal atresia, cardiac defects, tracheo­esophageal fistula, renal anomalies and limb abnormalities/hand­foot­genital syndrome may be attributable to the combination of different HOXA variants, particularly in patients with a severe clinical presentation. The current report contributed as well to the molecular understanding of HOXA genes­related phenotypes via the identification of novel variant and genes associations.


Subject(s)
Abnormalities, Multiple , Genes, Homeobox , Urogenital Abnormalities , Female , Humans , Abnormalities, Multiple/genetics , Mutation , Phenotype , Urogenital Abnormalities/diagnosis , Urogenital Abnormalities/genetics
14.
Nat Commun ; 14(1): 1543, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941270

ABSTRACT

Bicuspid aortic valve (BAV), the most common cardiovascular malformation occurs in 0.5-1.2% of the population. Although highly heritable, few causal mutations have been identified in BAV patients. Here, we report the targeted sequencing of HOXA1 in a cohort of BAV patients and the identification of rare indel variants in the homopolymeric histidine tract of HOXA1. In vitro analysis shows that disruption of this motif leads to a significant reduction in protein half-life and defective transcriptional activity of HOXA1. In zebrafish, targeting hoxa1a ortholog results in aortic valve defects. In vivo assays indicates that these variants behave as dominant negatives leading abnormal valve development. In mice, deletion of Hoxa1 leads to BAV with a very small, rudimentary non-coronary leaflet. We also show that 17% of homozygous Hoxa1-1His knock-in mice present similar phenotype. Genetic lineage tracing in Hoxa1-/- mutant mice reveals an abnormal reduction of neural crest-derived cells in the valve leaflet, which is caused by a failure of early migration of these cells.


Subject(s)
Bicuspid Aortic Valve Disease , Heart Valve Diseases , Homeodomain Proteins , Animals , Mice , Aortic Valve/abnormalities , Bicuspid Aortic Valve Disease/metabolism , Heart Valve Diseases/genetics , Heart Valve Diseases/metabolism , Histidine/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics , Homeodomain Proteins/genetics
15.
Clin Case Rep ; 10(2): e05339, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35341025

ABSTRACT

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmogenic syndrome characterized by life-threatening arrhythmias, a normal resting electrocardiogram and the absence of overt structural heart abnormalities. Mutations in RyR2 gene account for the large part of CPVT cases. Less frequently, mutations in CASQ2 gene have been linked to the recessive form of the disease. Overall, approximately 35% of CPVT patients remain without a genetic etiology implying that other genes might be found causative of the disease. Here, we present a 6-year-old boy born to first-degree related parents, with a typical phenotype of CPVT and a family history of sudden cardiac death of his brother at 7 years. A trio-based whole exome sequencing was performed, and we identified a homozygous variant in AGRN gene and a heterozygous variant in RPL3L gene. We hypothesized that the presence of the homozygous variant in AGRN accounts for the CPVT phenotype in this family and the heterozygous variant in RPL3L gene may act as a modifier gene. Further studies are needed to determine the role of these genes in CPVT.

16.
Mol Genet Genomic Med ; 10(7): e1954, 2022 07.
Article in English | MEDLINE | ID: mdl-35656879

ABSTRACT

BACKGROUND: Genetic cardiac diseases are the main trigger of sudden cardiac death (SCD) in young adults. Hypertrophic cardiomyopathy (HCM) is the most prevalent cardiomyopathy and accounts for 0.5 to 1% of SCD cases per year. METHODS: Herein, we report a family with a marked history of SCD focusing on one SCD young adult case and one pediatric case with HCM. RESULTS: For the deceased young adult, postmortem whole-exome sequencing (WES) revealed a missense variant in the ACTN2 gene: c.355G > A; p.(Ala119Thr) confirming the mixed hypertrophic/dilated cardiomyopathy phenotype detected in the autopsy. For the pediatric case, WES allowed us the identification of a novel frameshift variant in the LZTR1 gene: c.1745delT; p.(Val582Glyfs*10) which confirms a clinical suspicion of HCM related to Noonan syndrome. CONCLUSION: The present study adds further evidence on the pathogenicity of ACTN2: p. Ala119Thr variant in SCD and expands the mutational spectrum of the LZTR1 gene related to Noonan syndrome.


Subject(s)
Cardiomyopathy, Dilated , Cardiomyopathy, Hypertrophic , Noonan Syndrome , Actinin/genetics , Autopsy , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/genetics , Child , Death, Sudden, Cardiac/etiology , Humans , Mutation , Noonan Syndrome/genetics , Transcription Factors/genetics , Young Adult
17.
J Appl Genet ; 60(1): 49-56, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30284680

ABSTRACT

Autism spectrum disorder (ASD) is a set of neurodevelopmental conditions characterized by early-onset difficulties in social communication and unusually restricted, repetitive behavior and interests. Parental consanguinity may lead to higher risk of ASD and to more severe clinical presentations in the offspring. Studies of ASD families with high inbreeding enable the identification of inherited variants of this disorder particularly those with an autosomal recessive pattern of inheritance. In our study, using copy number variants (CNV) analysis, we identified a rare homozygous deletion in 2p11.2 region that affects ELMOD3, CAPG, and SH2D6 genes in a boy with ASD, intellectual disability (ID), and hearing impairment (HI). This deletion may reveal a new contiguous deletion syndrome in which ELMOD3, known to be implicated in autosomal recessive deafness underlies the HI of the proband and CAPG, member of actin regulatory proteins involved in cytoskeletal dynamic, an important function for brain development and activity, underlies the ASD/ID phenotype. A possible contribution of SH2D6 gene, as a part of a chimeric gene, to the clinical presentation of the patient is discussed. Our result supports the implication of ELMOD3 in hearing loss and highlights the potential clinical relevance of 2p11.2 deletion in autism and/or intellectual disability.


Subject(s)
Autism Spectrum Disorder/genetics , GTPase-Activating Proteins/genetics , Hearing Loss/genetics , Intellectual Disability/genetics , Sequence Deletion , Adolescent , Child , Child, Preschool , Chromosomes, Human, Pair 2/genetics , Female , Homozygote , Humans , Infant , Male , Pedigree
18.
J Dermatol ; 45(8): 978-985, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29808591

ABSTRACT

H syndrome is a rare autosomal recessive disorder with characteristic dermatological findings consisting of hyperpigmentation and hypertrichosis patches mainly located on the inner thighs and multisystemic involvement including hepatosplenomegaly, hearing loss, heart abnormalities and hypogonadism. The aim of this study was to conduct a clinical and genetic investigation in five unrelated Tunisian patients with suspected H syndrome. Hence, genetic analysis of the SLC29A3 gene was performed for four patients with a clinical diagnosis of H syndrome. We identified a novel frame-shift mutation in the SLC29A3 gene in a female patient with a severe clinical presentation. Furthermore, we report two mutations previously described, the p.R363Q mutation in a male patient and the p.P324L mutation in two patients of different age and sex. This paper extends the mutation spectrum of H syndrome by reporting a novel frame-shift mutation, the p.S15Pfs*86 in exon 2 of SLC29A3 gene and emphasizes the relevance of genetic testing for its considerable implications in early diagnosis and clinical management.


Subject(s)
Contracture/genetics , Hearing Loss, Sensorineural/genetics , Histiocytosis/genetics , Nucleoside Transport Proteins/genetics , Rare Diseases/genetics , Adult , Child, Preschool , Contracture/diagnosis , Contracture/pathology , Exons/genetics , Female , Frameshift Mutation , Genetic Testing , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/pathology , Histiocytosis/diagnosis , Histiocytosis/pathology , Humans , Male , Pedigree , Rare Diseases/diagnosis , Rare Diseases/pathology , Skin/pathology , Tunisia , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL