ABSTRACT
Myeloid neoplasms with erythroid or megakaryocytic differentiation include pure erythroid leukemia, myelodysplastic syndrome with erythroid features, and acute megakaryoblastic leukemia (FAB M7) and are characterized by poor prognosis and limited treatment options. Here, we investigate the drug sensitivity landscape of these rare malignancies. We show that acute myeloid leukemia (AML) cells with erythroid or megakaryocytic differentiation depend on the antiapoptotic protein B-cell lymphoma (BCL)-XL, rather than BCL-2, using combined ex vivo drug sensitivity testing, genetic perturbation, and transcriptomic profiling. High-throughput screening of >500 compounds identified the BCL-XL-selective inhibitor A-1331852 and navitoclax as highly effective against erythroid/megakaryoblastic leukemia cell lines. In contrast, these AML subtypes were resistant to the BCL-2 inhibitor venetoclax, which is used clinically in the treatment of AML. Consistently, genome-scale CRISPR-Cas9 and RNAi screening data demonstrated the striking essentiality of BCL-XL-encoding BCL2L1 but not BCL2 or MCL1, for the survival of erythroid/megakaryoblastic leukemia cell lines. Single-cell and bulk transcriptomics of patient samples with erythroid and megakaryoblastic leukemias identified high BCL2L1 expression compared with other subtypes of AML and other hematological malignancies, where BCL2 and MCL1 were more prominent. BCL-XL inhibition effectively killed blasts in samples from patients with AML with erythroid or megakaryocytic differentiation ex vivo and reduced tumor burden in a mouse erythroleukemia xenograft model. Combining the BCL-XL inhibitor with the JAK inhibitor ruxolitinib showed synergistic and durable responses in cell lines. Our results suggest targeting BCL-XL as a potential therapy option in erythroid/megakaryoblastic leukemias and highlight an AML subgroup with potentially reduced sensitivity to venetoclax-based treatments.
Subject(s)
Leukemia, Megakaryoblastic, Acute , Leukemia, Myeloid, Acute , Lymphoma, B-Cell , Animals , Mice , Humans , Proto-Oncogene Proteins c-bcl-2/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Cell Line, Tumor , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , bcl-X Protein/genetics , Leukemia, Megakaryoblastic, Acute/drug therapy , Leukemia, Megakaryoblastic, Acute/genetics , Cell Differentiation , ApoptosisABSTRACT
The bone marrow (BM) provides a protective microenvironment to support the survival of leukemic cells and influence their response to therapeutic agents. In acute myeloid leukemia (AML), the high rate of relapse may in part be a result of the inability of current treatment to effectively overcome the protective influence of the BM niche. To better understand the effect of the BM microenvironment on drug responses in AML, we conducted a comprehensive evaluation of 304 inhibitors, including approved and investigational agents, comparing ex vivo responses of primary AML cells in BM stroma-derived and standard culture conditions. In the stroma-based conditions, the AML patient cells exhibited significantly reduced sensitivity to 12% of the tested compounds, including topoisomerase II, B-cell chronic lymphocytic leukemia/lymphoma 2 (BCL2), and many tyrosine kinase inhibitors (TKIs). The loss of TKI sensitivity was most pronounced in patient samples harboring FLT3 or PDGFRB alterations. In contrast, the stroma-derived conditions enhanced sensitivity to Janus kinase (JAK) inhibitors. Increased cell viability and resistance to specific drug classes in the BM stroma-derived conditions was a result of activation of alternative signaling pathways mediated by factors secreted by BM stromal cells and involved a switch from BCL2 to BCLXL-dependent cell survival. Moreover, the JAK1/2 inhibitor ruxolitinib restored sensitivity to the BCL2 inhibitor venetoclax in AML patient cells ex vivo in different model systems and in vivo in an AML xenograft mouse model. These findings highlight the potential of JAK inhibitors to counteract stroma-induced resistance to BCL2 inhibitors in AML.
Subject(s)
Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyrazoles/therapeutic use , Sulfonamides/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Female , Humans , Janus Kinase 1/metabolism , Janus Kinase 2/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Nitriles , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrazoles/pharmacology , Pyrimidines , STAT Transcription Factors/metabolism , Signal Transduction/drug effects , Stromal Cells/drug effects , Stromal Cells/metabolism , Stromal Cells/pathology , Sulfonamides/pharmacology , Tumor Cells, CulturedABSTRACT
Thrombocytopenia, prevalent in the majority of patients with myeloid malignancies, such as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML), is an independent adverse prognostic factor. Azacitidine (AZA), a mainstay therapeutic agent for stem cell transplant-ineligible patients with MDS/AML, often transiently induces or further aggravates disease-associated thrombocytopenia by an unknown mechanism. Here, we uncover the critical role of an acute type-I interferon (IFN-I) signaling activation in suppressing megakaryopoiesis in AZA-mediated thrombocytopenia. We demonstrate that megakaryocytic lineage-primed progenitors present IFN-I receptors and, upon AZA exposure, engage STAT1/SOCS1-dependent downstream signaling prematurely attenuating thrombopoietin receptor (TPO-R) signaling and constraining megakaryocytic progenitor cell growth and differentiation following TPO-R stimulation. Our findings directly implicate RNA demethylation and IFN-I signal activation as a root cause for AZA-mediated thrombocytopenia and suggest mitigation of TPO-R inhibitory innate immune signaling as a suitable therapeutic strategy to support platelet production, particularly during the early phases of AZA therapy.
Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Thrombocytopenia , Azacitidine/pharmacology , Azacitidine/therapeutic use , Humans , Immunity, Innate , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/pathologyABSTRACT
The extensive drug resistance requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to selectively target disease-driving cell subpopulations. To solve the combinatorial explosion challenge, we implemented an effective machine learning approach that prioritizes patient-customized drug combinations with a desired synergy-efficacy-toxicity balance by combining single-cell RNA sequencing with ex vivo single-agent testing in scarce patient-derived primary cells. When applied to two diagnostic and two refractory acute myeloid leukemia (AML) patient cases, each with a different genetic background, we accurately predicted patient-specific combinations that not only resulted in synergistic cancer cell co-inhibition but also were capable of targeting specific AML cell subpopulations that emerge in differing stages of disease pathogenesis or treatment regimens. Our functional precision oncology approach provides an unbiased means for systematic identification of personalized combinatorial regimens that selectively co-inhibit leukemic cells while avoiding inhibition of nonmalignant cells, thereby increasing their likelihood for clinical translation.
ABSTRACT
Acute myeloid leukemia (AML) with co-occurring NUP98-NSD1 and FLT3-ITD is associated with unfavorable prognosis and represents a particularly challenging treatment group. To identify novel effective therapies for this AML subtype, we screened patient cells and engineered cell models with over 300 compounds. We found that mouse hematopoietic progenitors co-expressing NUP98-NSD1 and FLT3-ITD had significantly increased sensitivity to FLT3 and MEK-inhibitors compared to cells expressing either aberration alone (P < 0.001). The cells expressing NUP98-NSD1 alone had significantly increased sensitivity to BCL2-inhibitors (P = 0.029). Furthermore, NUP98-NSD1+/FLT3-ITD+ patient cells were also very sensitive to BCL2-inhibitor navitoclax, although the highest select sensitivity was found to SRC/ABL-inhibitor dasatinib (mean IC50 = 2.2 nM). Topoisomerase inhibitor mitoxantrone was the least effective drug against NUP98-NSD1+/FLT3-ITD+ AML cells. Of the 25 significant hits, four remained significant also compared to NUP98-NSD1-/FLT3-ITD+ AML patients. We found that SRC/ABL-inhibitor dasatinib is highly synergistic with BCL2-inhibitor navitoclax in NUP98-NSD1+/FLT3-ITD+ cells. Gene expression analysis supported the potential relevance of dasatinib and navitoclax by revealing significantly higher expression of BCL2A1, FGR, and LCK in NUP98-NSD1+/FLT3-ITD+ patients compared to healthy CD34+ cells. Our data suggest that dasatinib-navitoclax combination may offer a clinically relevant treatment strategy for AML with NUP98-NSD1 and concomitant FLT3-ITD.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Synergism , Leukemia, Myeloid, Acute/drug therapy , Oncogene Proteins, Fusion/antagonists & inhibitors , Tandem Repeat Sequences , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Aniline Compounds/administration & dosage , Animals , Bone Marrow/drug effects , Bone Marrow/pathology , Dasatinib/administration & dosage , Female , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred BALB C , Mutation , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Sulfonamides/administration & dosage , Tumor Cells, Cultured , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolismABSTRACT
Myelosuppression is a major side effect of chemotherapy in cancer patients and can result in infections, bleeding complications, and increased risk of morbidity and mortality, as well as limit the drug dose and frequency of administration. Chemotherapy-induced myelosuppression is caused by the disruption of normal hematopoiesis. Thus, prior understanding of the adverse effects of chemotherapies on hematopoietic cells is essential to minimize the side effects of cancer treatment. Traditional methods such as colony-forming assays for studying chemotherapy-induced myelosuppression are time-consuming and labor intensive. High-throughput flow cytometry technologies and methods to detect rare hematopoietic cell populations are critical in advancing our understanding of how different blood cell types in complex biological samples respond to chemotherapeutic drugs. In the present study, hematopoietic progenitor cells were induced to differentiate into megakaryocytes and myeloid lineage cells. The expanded cells were then used in a multiplexed assay to monitor the dose-response effects of multiple chemotherapies on different stages of megakaryocyte differentiation and myeloid cell populations in a 96-well plate format. The assay offers an alternative method to evaluate the myelosuppressive potential of novel chemotherapeutic drugs compared to traditional lower throughput and labor-intensive assays.