Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
BMC Gastroenterol ; 24(1): 255, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123126

ABSTRACT

BACKGROUND: Particulate matter exposure (PM) is a cause of aerodigestive disease globally. The destruction of the World Trade Center (WTC) exposed first responders and inhabitants of New York City to WTC-PM and caused obstructive airways disease (OAD), gastroesophageal reflux disease (GERD) and Barrett's Esophagus (BE). GERD not only diminishes health-related quality of life but also gives rise to complications that extend beyond the scope of BE. GERD can incite or exacerbate allergies, sinusitis, bronchitis, and asthma. Disease features of the aerodigestive axis can overlap, often necessitating more invasive diagnostic testing and treatment modalities. This presents a need to develop novel non-invasive biomarkers of GERD, BE, airway hyperreactivity (AHR), treatment efficacy, and severity of symptoms. METHODS: Our observational case-cohort study will leverage the longitudinally phenotyped Fire Department of New York (FDNY)-WTC exposed cohort to identify Biomarkers of Airway Disease, Barrett's and Underdiagnosed Reflux Noninvasively (BAD-BURN). Our study population consists of n = 4,192 individuals from which we have randomly selected a sub-cohort control group (n = 837). We will then recruit subgroups of i. AHR only ii. GERD only iii. BE iv. GERD/BE and AHR overlap or v. No GERD or AHR, from the sub-cohort control group. We will then phenotype and examine non-invasive biomarkers of these subgroups to identify under-diagnosis and/or treatment efficacy. The findings may further contribute to the development of future biologically plausible therapies, ultimately enhance patient care and quality of life. DISCUSSION: Although many studies have suggested interdependence between airway and digestive diseases, the causative factors and specific mechanisms remain unclear. The detection of the disease is further complicated by the invasiveness of conventional GERD diagnosis procedures and the limited availability of disease-specific biomarkers. The management of reflux is important, as it directly increases risk of cancer and negatively impacts quality of life. Therefore, it is vital to develop novel noninvasive disease markers that can effectively phenotype, facilitate early diagnosis of premalignant disease and identify potential therapeutic targets to improve patient care. TRIAL REGISTRATION: Name of Primary Registry: "Biomarkers of Airway Disease, Barrett's and Underdiagnosed Reflux Noninvasively (BADBURN)". Trial Identifying Number: NCT05216133 . Date of Registration: January 31, 2022.


Subject(s)
Barrett Esophagus , Biomarkers , Firefighters , Gastroesophageal Reflux , September 11 Terrorist Attacks , Humans , Barrett Esophagus/diagnosis , Barrett Esophagus/etiology , Gastroesophageal Reflux/diagnosis , Biomarkers/blood , Case-Control Studies , Firefighters/statistics & numerical data , New York City , Occupational Exposure/adverse effects , Particulate Matter/adverse effects , Particulate Matter/analysis , Observational Studies as Topic , Male
2.
Rev Med Virol ; 29(2): e2024, 2019 03.
Article in English | MEDLINE | ID: mdl-30548740

ABSTRACT

Respiratory infections, especially those of the lower respiratory tract, remain a foremost cause of mortality and morbidity of children greater than 5 years in developing countries including Pakistan. Ignoring these acute-level infections may lead to complications. Particularly in Pakistan, respiratory infections account for 20% to 30% of all deaths of children. Even though these infections are common, insufficiency of accessible data hinders development of a comprehensive summary of the problem. The purpose of this study was to determine the prevalence rate in various regions of Pakistan and also to recognize the existing viral strains responsible for viral respiratory infections through published data. Respiratory viruses are detected more frequently among rural dwellers in Pakistan. Lower tract infections are found to be more lethal. The associated pathogens comprise respiratory syncytial virus (RSV), human metapneumovirus (HMPV), coronavirus, enterovirus/rhinovirus, influenza virus, parainfluenza virus, adenovirus, and human bocavirus. RSV is more dominant and can be subtyped as RSV-A and RSV-B (BA-9, BA-10, and BA-13). Influenza A (H1N1, H5N1, H3N2, and H1N1pdm09) and Influenza B are common among the Pakistani population. Generally, these strains are detected in a seasonal pattern with a high incidence during spring and winter time. The data presented include pneumonia, bronchiolitis, and influenza. This paper aims to emphasise the need for standard methods to record the incidence and etiology of associated pathogens in order to provide effective treatment against viral infections of the respiratory tract and to reduce death rates.


Subject(s)
Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology , Virus Diseases/epidemiology , Virus Diseases/etiology , Viruses/classification , Viruses/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Middle Aged , Pakistan/epidemiology , Prevalence , Respiratory Tract Infections/pathology , Topography, Medical , Virus Diseases/pathology , Young Adult
3.
Pak J Pharm Sci ; 32(6): 2761-2764, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31969313

ABSTRACT

Hydrothermal spring isolate Bacillus megaterium KIBGE-IB31was utilized to produce dextranase. Enzyme was partially purified up to 11.8 fold after dialysis. Different metals ions were tested to explore their behavior with dextranase. It was noticed that cobalt (Co+2), copper (Cu+2), magnesium (Mg+2), manganese (Mn+2), nickle (Ni+2) and zinc (Zn+2) act as activator whilst potassium (K+), sodium (Na+), barium (Ba+), calcium (Ca+), mercury (Hg+), vanadium (V+2), aluminum (Al+3) and ferric (Fe+3) ions display inhibitory action.


Subject(s)
Biocatalysis/drug effects , Dextrans/metabolism , Metals/metabolism , Bacillus megaterium/metabolism , Barium/metabolism , Calcium/metabolism , Cobalt/metabolism , Copper/metabolism , Dextranase/metabolism , Hydrolysis , Magnesium/metabolism , Manganese/metabolism , Mercury/metabolism , Nickel/metabolism , Potassium/metabolism , Sodium/metabolism , Zinc/metabolism
4.
Res Sq ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798396

ABSTRACT

BACKGROUND: Particulate matter exposure (PM) is a cause of aerodigestive disease globally. The destruction of the World Trade Center (WTC) exposed fifirst responders and inhabitants of New York City to WTC-PM and caused obstructive airways disease (OAD), gastroesophageal Refux disease (GERD) and Barrett's Esophagus (BE). GERD not only diminishes health-related quality of life but also gives rise to complications that extend beyond the scope of BE. GERD can incite or exacerbate allergies, sinusitis, bronchitis, and asthma. Disease features of the aerodigestive axis can overlap, often necessitating more invasive diagnostic testing and treatment modalities. This presents a need to develop novel non-invasive biomarkers of GERD, BE, airway hyperreactivity (AHR), treatment efficacy, and severity of symptoms. METHODS: Our observational case-cohort study will leverage the longitudinally phenotyped Fire Department of New York (FDNY)-WTC exposed cohort to identify Biomarkers of Airway Disease, Barrett's and Underdiagnosed Refux Noninvasively (BAD-BURN). Our study population consists of n = 4,192 individuals from which we have randomly selected a sub-cohort control group (n = 837). We will then recruit subgroups of i. AHR only ii. GERD only iii. BE iv. GERD/BE and AHR overlap or v. No GERD or AHR, from the sub-cohort control group. We will then phenotype and examine non-invasive biomarkers of these subgroups to identify under-diagnosis and/or treatment efficacy. The findings may further contribute to the development of future biologically plausible therapies, ultimately enhance patient care and quality of life. DISCUSSION: Although many studies have suggested interdependence between airway and digestive diseases, the causative factors and specific mechanisms remain unclear. The detection of the disease is further complicated by the invasiveness of conventional GERD diagnosis procedures and the limited availability of disease-specific biomarkers. The management of Refux is important, as it directly increases risk of cancer and negatively impacts quality of life. Therefore, it is vital to develop novel noninvasive disease markers that can effectively phenotype, facilitate early diagnosis of premalignant disease and identify potential therapeutic targets to improve patient care. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05216133; January 18, 2022.

5.
Int J Biol Macromol ; 278(Pt 2): 134699, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142489

ABSTRACT

The present study aims to develop Asphaltum punjabianum (namely Shilajit) coated Polyvinyl alcohol (PVA)/Carboxymethyl cellulose (CMC) hydrogels and examine their structural, morphological, degradation, and biological properties. Hydrogels were produced at two different concentrations: 70:30 PVA/CMC and 90:10 PVA/CMC. Following that, Shilajit was applied to the synthesized hydrogels using electrophoretic deposition for a duration of 3 min at 30 V. The scanning electron microscopy images showed that the hydrogel's surface had a regular distribution of irregular Shilajit particles. Fourier transform infrared spectroscopy (FTIR) analysis demonstrated the presence of hydrogen bonding between PVA and CMC hydrogels and Shilajit, indicating the successful deposition of Shilajit on the hydrogel. The hydrogels coated with Shilajit exhibited strong antimicrobial activity, resulting in an inhibition zone measuring 34 mm against Escherichia coli (E. coli) and 41 mm against Staphylococcus aureus (S. aureus). The hydrogels exhibited a cell viability of 80 % with mesenchymal stem cells (MSCs), and the release of collagen II also increased. Furthermore, the PVA/CMC/Shilajit hydrogel exhibited a lower degradation rate compared to the PVA/CMC hydrogel. The results of the swelling, degradation, and drug release studies indicate that the shilajit coating is appropriate for the long-term process of tissue and cartilage regeneration.

6.
Front Plant Sci ; 14: 1269521, 2023.
Article in English | MEDLINE | ID: mdl-37908828

ABSTRACT

Studying the thermal stress effect on sucrose-metabolizing enzymes in sugarcane is of great importance for understanding acclimation to thermal stress. In this study, two varieties, S2003-US-633 and SPF-238, were grown at three different temperatures ( ± 2°C): 30°C as a control, 45°C for various episodes of high temperature treatments and recovery conditions at 24, 48 and 72 hours. Data showed that reducing sugar content increased until the grand growth stage but sharply declined at the maturity stage in both cultivars. On the other hand, sucrose is enhanced only at the maturity stage. The expression of all invertase isozymes declined prominently; however, the expression of SPS was high at the maturity stage. Hence, the sucrose accumulation in mature cane was due to increased SPS activity while decreased invertase isozymes (vacuolar, cytoplasmic and cell wall) activities at maturity stage in both cultivars. Heat shock decreased the sucrose metabolizing enzymes, sucrose content and sugar recovery rate in both cultivars. In contrast, heat-shock treatments induced maximum proline, MDA, H2O2 and EC in both cultivars. Notably, this is the first report of diverse invertase isozyme molecular weight proteins, such as those with 67, 134 and 160 kDa, produced under heat stress, suggesting that these enzymes have varied activities at different developmental stages. Overall, S2003-US-633 performs better than the cultivar SPF-238 under heat stress conditions at all development stages, with increased sucrose content, enzyme expression, proline and sugar recovery rate. This work will provide a new avenue regarding sugarcane molecular breeding programs with respect to thermal stress.

7.
Life (Basel) ; 13(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36836898

ABSTRACT

BACKGROUND: Particulate matter (PM) exposure is responsible for seven million deaths annually and has been implicated in the pathogenesis of respiratory infections such as severe acute respiratory syndrome (SARS). Understanding modifiable risk factors of high mortality, resource burdensome C19 and exposure risks such as PM is key to mitigating their devastating effects. This systematic review focuses on the literature available, identifying the spatial and temporal variation in the role of quantified PM exposure in SARS disease outcome and planning our future experimental studies. METHODS: The systematic review utilized keywords adhered to the PRISMA guidelines. We included original human research studies in English. RESULTS: Initial search yielded N = 906, application of eligibility criteria yielded N = 46. Upon analysis of risk of bias N = 41 demonstrated high risk. Studies found a positive association between elevated PM2.5, PM10 and SARS-related outcomes. A geographic and temporal variation in both PM and C19's role was observed. CONCLUSION: C19 is a high mortality and resource intensive disease which devastated the globe. PM exposure is also a global health crisis. Our systematic review focuses on the intersection of this impactful disease-exposure dyad and understanding the role of PM is important in the development of interventions to prevent future spread of viral infections.

9.
Gastro Hep Adv ; 2(4): 608-620, 2023.
Article in English | MEDLINE | ID: mdl-38009162

ABSTRACT

BACKGROUND AND AIMS: Gastroesophageal reflux disease (GERD) is a prevalent gastrointestinal disorder that may complicate conditions such as obstructive airway disease. Our group has identified predictive biomarkers of GERD in particulate exposed first responders with obstructive airway disease. In addition, GERD diagnosis and treatment is costly and invasive. In light of these clinical concerns, we aimed to systematically review studies identifying noninvasive, multiOmic, and multicompartmental biomarkers of GERD. METHODS: A systematic review of PubMed and Embase was performed using keywords focusing on reflux disease and biomarkers and registered with PROSPERO. We included original human studies in English, articles focusing on noninvasive biomarkers of GERD published after December 31, 2009. GERD subtypes (non-erosive reflux disease and erosive esophagitis) and related conditions (Barrett's Esophagus [BE] and Esophageal Adenocarcinoma). Predictive measures were synthesized and risk of bias assessed (Newcastle-Ottawa Scale). RESULTS: Initial search identified n = 238 studies andn 13 articles remained after applying inclusion/exclusion criteria. Salivary pepsin was the most studied biomarker with significant sensitivity and specificity for GERD. Serum assessment showed elevated levels of Tumor Necrosis Factor-alpha in both GERD and Barrett's. Exhaled breath volatile sulfur compounds and acetic acid were associated with GERD. Oral Microbiome: Models with Lautropia, Streptococcus, and Bacteroidetes showed the greatest discrimination between BE and controls vs Lautropia; ROCAUC 0.94 (95% confidence interval; 0.85-1.00). CONCLUSION: Prior studies identified significant multiOmic, multicompartmental noninvasive biomarker risks for GERD and BE. However, studies have a high risk of bias and the reliability and accuracy of the biomarkers identified are greatly limited, which further highlights the need to discover and validate clinically relevant noninvasive biomarkers of GERD.

10.
Int J Biol Macromol ; 115: 643-650, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29689285

ABSTRACT

Metallic nanoparticles have a substantial scientific interest because of their distinctive physicochemical and antimicrobial properties and the emergence of multidrug resistant pathogens could unlock the potential of nanoparticles to combat infectious diseases. The aim of the current study is to enhance the antibacterial potential of purified bacteriocin by combining bacteriocin and antibacterial silver nanoparticles (AgNPs). Hence, the interaction of natural antimicrobial compounds and antibacterial nanoparticles can be used as a potential tool for combating infectious diseases. In this study, a green, simple and effective approach is used to synthesize antibacterial AgNPs using fungal exopolysaccharide as both a reducing and stabilizing agent. The AgNPs were characterized by spectroscopic analysis, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) and Dynamic Light Scattering (DLS). Furthermore, the synergistic effect of bacteriocin-AgNPs was determined against pathogenic strains. The histogram of AgNPs indicated well-dispersed, stabilized and negatively charged particles with variable size distribution. The combination of bacteriocin with nanoparticles found to be more effective due to broad antibacterial potential with possibly lower doses. The current study is imperative to provide an alternative for the chemical synthesis of silver nanoparticles. It showed environmental friendly and cost effective green synthesis of antibacterial nanoparticles.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteriocins/chemistry , Fungal Polysaccharides/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Silver/pharmacology , Microbial Sensitivity Tests
11.
PDA J Pharm Sci Technol ; 68(5): 494-503, 2014.
Article in English | MEDLINE | ID: mdl-25336420

ABSTRACT

Glass prefillable syringes are lubricated with silicone oil to ensure functionality and a consistent injection for the end user. If excessive silicone is applied, droplets could potentially result in aggregation of sensitive biopharmaceuticals or clouding of the solution. Therefore, monitoring and optimization of the applied silicone layer is critical for prefilled syringe development. The hydrophobic properties of silicone oil, the potential for assay interference, and the very small quantities applied to prefilled syringes present a challenge for the development of a suitable assay. In this work we present a rapid and simple Fourier transform infrared (FTIR) spectroscopy method for quantitation of total silicone levels applied to prefilled syringes. Level-dependent silicone oil migration occurred over time for empty prefilled syringes stored tip-up. However, migration from all prefilled syringes with between 0.25 and 0.8 mg of initial silicone oil resulted in a stable limiting minimum level of between 0.15 and 0.26 mg of silicone in the syringe reached after 1 to 4 years of empty tip-up storage. The results of the FTIR assay correlated well with non-destructive reflectometry characterization of the syringes. This assay can provide valuable data for selection of a robust initial silicone oil target and quality control of prefilled syringes intended for biopharmaceuticals. LAY ABSTRACT: Glass prefillable syringes are lubricated with silicone oil to ensure functionality and a consistent injection for the end user. If excessive silicone is applied, droplets could potentially result in aggregation of sensitive biopharmaceuticals or clouding of the solution. Therefore, monitoring and optimization of the applied silicone layer is critical for prefilled syringe development. The hydrophobic properties of silicone oil, the potential for assay interference, and the very small quantities applied to prefilled syringes present a challenge for the development of a suitable assay. In this work we present a rapid and simple Fourier transform infrared (FTIR) spectroscopy method for quantitation of total silicone levels applied to prefilled syringes. Level-dependent silicone oil migration occurred over time for empty prefilled syringes stored tip-up. However, migration from all prefilled syringes with between 0.25 and 0.8 mg of initial silicone oil resulted in a stable limiting minimum level of between 0.15 and 0.26 mg of silicone in the syringe reached after 1 to 4 years of empty tip-up storage. The results of the FTIR assay correlated well with non-destructive reflectometry characterization of the syringes. This assay can provide valuable data for selection of a robust initial silicone oil target and quality control of prefilled syringes intended for biopharmaceuticals.


Subject(s)
Biological Products/analysis , Biopharmaceutics/methods , Drug Contamination , Drug Packaging , Lubricants/analysis , Silicone Oils/analysis , Spectroscopy, Fourier Transform Infrared , Syringes , Technology, Pharmaceutical/methods , Biopharmaceutics/standards , Drug Storage , Glass , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Linear Models , Motion , Reference Standards , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared/standards , Technology, Pharmaceutical/standards , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL