ABSTRACT
ß-arrestins bind G protein-coupled receptors to terminate G protein signaling and to facilitate other downstream signaling pathways. Using single-molecule fluorescence resonance energy transfer imaging, we show that ß-arrestin is strongly autoinhibited in its basal state. Its engagement with a phosphopeptide mimicking phosphorylated receptor tail efficiently releases the ß-arrestin tail from its N domain to assume distinct conformations. Unexpectedly, we find that ß-arrestin binding to phosphorylated receptor, with a phosphorylation barcode identical to the isolated phosphopeptide, is highly inefficient and that agonist-promoted receptor activation is required for ß-arrestin activation, consistent with the release of a sequestered receptor C tail. These findings, together with focused cellular investigations, reveal that agonism and receptor C-tail release are specific determinants of the rate and efficiency of ß-arrestin activation by phosphorylated receptor. We infer that receptor phosphorylation patterns, in combination with receptor agonism, synergistically establish the strength and specificity with which diverse, downstream ß-arrestin-mediated events are directed.
Subject(s)
Phosphopeptides , Receptors, G-Protein-Coupled , Phosphopeptides/metabolism , Phosphorylation , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 1/metabolism , beta-Arrestins/metabolismABSTRACT
The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca2+ concentration and maintains Ca2+ homeostasis1,2. It also mediates diverse cellular processes not associated with Ca2+ balance3-5. The functional pleiotropy of CaSR arises in part from its ability to signal through several G-protein subtypes6. We determined structures of CaSR in complex with G proteins from three different subfamilies: Gq, Gi and Gs. We found that the homodimeric CaSR of each complex couples to a single G protein through a common mode. This involves the C-terminal helix of each Gα subunit binding to a shallow pocket that is formed in one CaSR subunit by all three intracellular loops (ICL1-ICL3), an extended transmembrane helix 3 and an ordered C-terminal region. G-protein binding expands the transmembrane dimer interface, which is further stabilized by phospholipid. The restraint imposed by the receptor dimer, in combination with ICL2, enables G-protein activation by facilitating conformational transition of Gα. We identified a single Gα residue that determines Gq and Gs versus Gi selectivity. The length and flexibility of ICL2 allows CaSR to bind all three Gα subtypes, thereby conferring capacity for promiscuous G-protein coupling.
Subject(s)
Heterotrimeric GTP-Binding Proteins , Receptors, Calcium-Sensing , Humans , Calcium/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/chemistry , Models, Molecular , Protein Binding , Protein Multimerization , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/chemistry , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/metabolism , Binding Sites , Protein Structure, Secondary , Substrate SpecificityABSTRACT
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
The human GABAB receptor-a member of the class C family of G-protein-coupled receptors (GPCRs)-mediates inhibitory neurotransmission and has been implicated in epilepsy, pain and addiction1. A unique GPCR that is known to require heterodimerization for function2-6, the GABAB receptor has two subunits, GABAB1 and GABAB2, that are structurally homologous but perform distinct and complementary functions. GABAB1 recognizes orthosteric ligands7,8, while GABAB2 couples with G proteins9-14. Each subunit is characterized by an extracellular Venus flytrap (VFT) module, a descending peptide linker, a seven-helix transmembrane domain and a cytoplasmic tail15. Although the VFT heterodimer structure has been resolved16, the structure of the full-length receptor and its transmembrane signalling mechanism remain unknown. Here we present a near full-length structure of the GABAB receptor, captured in an inactive state by cryo-electron microscopy. Our structure reveals several ligands that preassociate with the receptor, including two large endogenous phospholipids that are embedded within the transmembrane domains to maintain receptor integrity and modulate receptor function. We also identify a previously unknown heterodimer interface between transmembrane helices 3 and 5 of both subunits, which serves as a signature of the inactive conformation. A unique 'intersubunit latch' within this transmembrane interface maintains the inactive state, and its disruption leads to constitutive receptor activity.
Subject(s)
Cryoelectron Microscopy , Receptors, GABA-B/chemistry , Receptors, GABA-B/ultrastructure , Calcium/metabolism , Ethanolamines/chemistry , Ethanolamines/metabolism , Humans , Ligands , Models, Molecular , Phosphorylcholine/chemistry , Phosphorylcholine/metabolism , Protein Domains , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Receptors, GABA-B/metabolism , Structure-Activity RelationshipABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
MhsT of Bacillus halodurans is a transporter of hydrophobic amino acids and a homologue of the eukaryotic SLC6 family of Na+ -dependent symporters for amino acids, neurotransmitters, osmolytes, or creatine. The broad range of transported amino acids by MhsT prompted the investigation of the substrate recognition mechanism. Here, we report six new substrate-bound structures of MhsT, which, in conjunction with functional studies, reveal how the flexibility of a Gly-Met-Gly (GMG) motif in the unwound region of transmembrane segment 6 (TM6) is central for the recognition of substrates of different size by tailoring the binding site shape and volume. MhsT mutants, harboring substitutions within the unwound GMG loop and substrate binding pocket that mimick the binding sites of eukaryotic SLC6A18/B0AT3 and SLC6A19/B0AT1 transporters of neutral amino acids, exhibited impaired transport of aromatic amino acids that require a large binding site volume. Conservation of a general (G/A/C)ΦG motif among eukaryotic members of SLC6 family suggests a role for this loop in a common mechanism for substrate recognition and translocation by SLC6 transporters of broad substrate specificity.
Subject(s)
Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Bacillus/metabolism , Binding Sites/physiology , Protein Conformation , Substrate Specificity/physiologyABSTRACT
Secondary active transporters, which are vital for a multitude of physiological processes, use the energy of electrochemical ion gradients to power substrate transport across cell membranes1,2. Efforts to investigate their mechanisms of action have been hampered by their slow transport rates and the inherent limitations of ensemble methods. Here we quantify the activity of individual MhsT transporters, which are representative of the neurotransmitter:sodium symporter family of secondary transporters3, by imaging the transport of individual substrate molecules across lipid bilayers at both single- and multi-turnover resolution. We show that MhsT is active only when physiologically oriented and that the rate-limiting step of the transport cycle varies with the nature of the transported substrate. These findings are consistent with an extracellular allosteric substrate-binding site that modulates the rate-limiting aspects of the transport mechanism4,5, including the rate at which the transporter returns to an outward-facing state after the transported substrate is released.
Subject(s)
Amino Acids/metabolism , Single Molecule Imaging , Symporters/analysis , Symporters/metabolism , Allosteric Site , Amino Acids/analysis , Amino Acids/chemistry , Bacterial Proteins/analysis , Bacterial Proteins/metabolism , Biological Transport , Cell Survival , Fluorescence Resonance Energy Transfer , Hydrophobic and Hydrophilic Interactions , Kinetics , Lipid Bilayers/metabolism , Protein Conformation , Symporters/chemistryABSTRACT
The serotonergic transmitter system plays fundamental roles in the nervous system in neurotransmission, synaptic plasticity, pathological processes, and therapeutic effects of antidepressants and psychedelics, as well as in the gastrointestinal and circulatory systems. We introduce a novel small molecule fluorescent agent, termed SERTlight, that specifically labels serotonergic neuronal cell bodies, dendrites, and axonal projections as a serotonin transporter (SERT) fluorescent substrate. SERTlight was developed by an iterative molecular design process, based on an aminoethyl-quinolone system, to integrate structural elements that impart SERT substrate activity, sufficient fluorescent brightness, and a broad absence of pharmacological activity, including at serotonin (5-hydroxytryptamine, 5HT) receptors, other G protein-coupled receptors (GPCRs), ion channels, and monoamine transporters. The high labeling selectivity is not achieved by high affinity binding to SERT itself but rather by a sufficient rate of SERT-mediated transport of SERTlight, resulting in accumulation of these molecules in 5HT neurons and yielding a robust and selective optical signal in the mammalian brain. SERTlight provides a stable signal, as it is not released via exocytosis nor by reverse SERT transport induced by 5HT releasers such as MDMA. SERTlight is optically, pharmacologically, and operationally orthogonal to a wide range of genetically encoded sensors, enabling multiplexed imaging. SERTlight enables labeling of distal 5HT axonal projections and simultaneous imaging of the release of endogenous 5HT using the GRAB5HT sensor, providing a new versatile molecular tool for the study of the serotonergic system.
Subject(s)
Fluorescent Dyes , Serotonin , Animals , Serotonin/metabolism , Fluorescent Dyes/metabolism , Neurons/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Brain/metabolism , Mammals/metabolismABSTRACT
Class C G protein-coupled receptors (GPCRs) are known to form stable homodimers or heterodimers critical for function, but the oligomeric status of class A and B receptors, which constitute >90% of all GPCRs, remains hotly debated. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful approach with the potential to reveal valuable insights into GPCR organization but has rarely been used in living cells to study protein systems. Here, we report generally applicable methods for using smFRET to detect and track transmembrane proteins diffusing within the plasma membrane of mammalian cells. We leverage this in-cell smFRET approach to show agonist-induced structural dynamics within individual metabotropic glutamate receptor dimers. We apply these methods to representative class A, B and C receptors, finding evidence for receptor monomers, density-dependent dimers and constitutive dimers, respectively.
Subject(s)
Fluorescence Resonance Energy Transfer/methods , Receptors, G-Protein-Coupled/metabolism , Dimerization , Protein Conformation , Receptors, G-Protein-Coupled/chemistryABSTRACT
Increasing evidence supports a relationship between lipid metabolism and mental health. In particular, the biostatus of polyunsaturated fatty acids (PUFAs) correlates with some symptoms of psychiatric disorders, as well as the efficacy of pharmacological treatments. Recent findings highlight a direct association between brain PUFA levels and dopamine transmission, a major neuromodulatory system implicated in the etiology of psychiatric symptoms. However, the mechanisms underlying this relationship are still unknown. Here we demonstrate that membrane enrichment in the n-3 PUFA docosahexaenoic acid (DHA), potentiates ligand binding to the dopamine D2 receptor (D2R), suggesting that DHA acts as an allosteric modulator of this receptor. Molecular dynamics simulations confirm that DHA has a high preference for interaction with the D2R and show that membrane unsaturation selectively enhances the conformational dynamics of the receptor around its second intracellular loop. We find that membrane unsaturation spares G protein activity but potentiates the recruitment of ß-arrestin in cells. Furthermore, in vivo n-3 PUFA deficiency blunts the behavioral effects of two D2R ligands, quinpirole and aripiprazole. These results highlight the importance of membrane unsaturation for D2R activity and provide a putative mechanism for the ability of PUFAs to enhance antipsychotic efficacy.
ABSTRACT
Adhesion G protein-coupled receptor latrophilin 3 (ADGRL3), a cell adhesion molecule highly expressed in the central nervous system, acts in synapse formation through trans interactions with its ligands. It is largely unknown if these interactions serve a purely adhesive function or can modulate G protein signaling. To assess how different structural elements of ADGRL3 (e.g., the adhesive domains, autoproteolytic cleavage site, or tethered agonist (TA)) impact receptor function, we require constructs that disrupt specific receptor features without impacting others. While we showed previously that mutating conserved Phe and Met residues in the TA of ADGRL3-C-terminal fragment (CTF), a CTF truncated to the G protein-coupled receptor proteolysis site, abolishes receptor-mediated G protein activation, we now find that autoproteolytic cleavage is disrupted in the full-length version of this construct. To identify a construct that disrupts TA-dependent activity without impacting proteolysis, we explored other mutations in the TA. We found that mutating the sixth and seventh residues of the TA, Leu and Met, to Ala impaired activity in a serum response element activity assay for both full-length and CTF constructs. We confirmed this activity loss results from impaired G protein coupling using an assay that acutely exposes the TA through controlled proteolysis. The ADGRL3 mutant expresses normally at the cell surface, and immunoblotting shows that it undergoes normal autoproteolysis. Thus, we found a construct that disrupts tethered agonism while retaining autoproteolytic cleavage, providing a tool to disentangle these functions in vivo. Our approach and specific findings are likely to be broadly applicable to other adhesion receptors.
Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Animals , Humans , Mice , Cell Adhesion , Cell Membrane/metabolism , Platelet Glycoprotein GPIb-IX Complex , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolismABSTRACT
Glutamate acts at eight metabotropic glutamate (mGlu) receptor subtypes expressed in a partially overlapping fashion in distinct brain circuits. Recent evidence indicates that specific mGlu receptor protomers can heterodimerize and that these heterodimers can exhibit different pharmacology when compared to their homodimeric counterparts. Group III mGlu agonist-induced suppression of evoked excitatory potentials and induction of long-term potentiation at Schaffer collateral-CA1 (SC-CA1) synapses in the rodent hippocampus can be blocked by the selective mGlu7 negative allosteric modulator (NAM), ADX71743. Curiously, a different mGlu7 NAM, 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one, failed to block these responses in brain slices despite its robust activity at mGlu7 homodimers in vitro. We hypothesized that this might result from heterodimerization of mGlu7 with another mGlu receptor protomer and focused on mGlu8 as a candidate given the reported effects of mGlu8-targeted compounds in the hippocampus. Here, we used complemented donor acceptor-resonance energy transfer to study mGlu7/8 heterodimer activation in vitro and observed that ADX71743 blocked responses of both mGlu7/7 homodimers and mGlu7/8 heterodimers, whereas 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one only antagonized responses of mGlu7/7 homodimers. Taken together with our electrophysiology observations, these results suggest that a receptor with pharmacology consistent with an mGlu7/8 heterodimer modulates the activity of SC-CA1 synapses. Building on this hypothesis, we identified two additional structurally related mGlu7 NAMs that also differ in their activity at mGlu7/8 heterodimers, in a manner consistent with their ability to inhibit synaptic transmission and plasticity at SC-CA1. Thus, we propose that mGlu7/8 heterodimers are a key molecular target for modulating the activity of hippocampal SC-CA1 synapses.
Subject(s)
Glutamic Acid , Receptors, Metabotropic Glutamate , Synapses , Hippocampus/metabolism , Long-Term Potentiation , Receptors, Metabotropic Glutamate/metabolism , Synapses/metabolism , Animals , Rodentia , Saccharomyces cerevisiae , ElectrophysiologyABSTRACT
It was first posited, more than five decades ago, that the etiology of schizophrenia involves overstimulation of dopamine receptors. Since then, advanced clinical research methods, including brain imaging, have refined our understanding of the relationship between striatal dopamine and clinical phenotypes as well as disease trajectory. These studies point to striatal dopamine D2 receptors, the main target for all current antipsychotic medications, as being involved in both positive and negative symptoms. Simultaneously, animal models have been central to investigating causal relationships between striatal dopamine D2 receptors and behavioral phenotypes relevant to schizophrenia. We begin this article by reviewing the circuit, cell-type and subcellular locations of dopamine D2 receptors and their downstream signaling pathways. We then summarize results from several mouse models in which D2 receptor levels were altered in various brain regions, cell-types and developmental periods. Behavioral, electrophysiological and anatomical consequences of these D2 receptor perturbations are reviewed with a selective focus on striatal circuit function and alterations in motivated behavior, a core negative symptom of schizophrenia. These studies show that D2 receptors serve distinct physiological roles in different cell types and at different developmental time points, regulating motivated behaviors in sometimes opposing ways. We conclude by considering the clinical implications of this complex regulation of striatal circuit function by D2 receptors.
Subject(s)
Motivation , Schizophrenia , Animals , Corpus Striatum/metabolism , Mice , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Schizophrenia/metabolismABSTRACT
Cholinergic interneurons (CINs) in the striatum respond to salient stimuli with a multiphasic response, including a pause, in neuronal activity. Slice-physiology experiments have shown the importance of dopamine D2 receptors (D2Rs) in regulating CIN pausing, yet the behavioral significance of the CIN pause and its regulation by dopamine in vivo is still unclear. Here, we show that D2R upregulation in CINs of the nucleus accumbens (NAc) lengthens the pause in CIN activity ex vivo and enlarges a stimulus-evoked decrease in acetylcholine (ACh) levels during behavior. This enhanced dip in ACh levels is associated with a selective deficit in the learning to inhibit responding in a Go/No-Go task. Our data demonstrate, therefore, the importance of CIN D2Rs in modulating the CIN response induced by salient stimuli and point to a role of this response in inhibitory learning. This work has important implications for brain disorders with altered striatal dopamine and ACh function, including schizophrenia and attention-deficit hyperactivity disorder (ADHD).
Subject(s)
Dopamine , Receptors, Dopamine D2 , Acetylcholine , Cholinergic Agents , Corpus Striatum , Interneurons/physiology , Nucleus AccumbensABSTRACT
G-protein-coupled receptor (GPCR)-mediated signal transduction is central to human physiology and disease intervention, yet the molecular mechanisms responsible for ligand-dependent signalling responses remain poorly understood. In class A GPCRs, receptor activation and G-protein coupling entail outward movements of transmembrane helix 6 (TM6). Here, using single-molecule fluorescence resonance energy transfer imaging, we examine TM6 movements in the ß2 adrenergic receptor (ß2AR) upon exposure to orthosteric ligands with different efficacies, in the absence and presence of the Gs heterotrimer. We show that partial and full agonists differentially affect TM6 motions to regulate the rate at which GDP-bound ß2AR-Gs complexes are formed and the efficiency of nucleotide exchange leading to Gs activation. These data also reveal transient nucleotide-bound ß2AR-Gs species that are distinct from known structures, and provide single-molecule perspectives on the allosteric link between ligand- and nucleotide-binding pockets that shed new light on the G-protein activation mechanism.
Subject(s)
GTP-Binding Protein alpha Subunits, Gs/metabolism , Receptors, Adrenergic, beta-2/metabolism , Single Molecule Imaging , Adrenergic beta-2 Receptor Agonists/chemistry , Adrenergic beta-2 Receptor Agonists/metabolism , Adrenergic beta-2 Receptor Agonists/pharmacology , Allosteric Site , Cell Membrane/metabolism , Clenbuterol/chemistry , Clenbuterol/metabolism , Clenbuterol/pharmacology , Enzyme Activation/drug effects , Epinephrine/chemistry , Epinephrine/metabolism , Epinephrine/pharmacology , Fluorescence Resonance Energy Transfer , GTP-Binding Protein alpha Subunits, Gs/chemistry , Guanosine Diphosphate/metabolism , Humans , Kinetics , Ligands , Models, Molecular , Movement/drug effects , Protein Stability , Receptors, Adrenergic, beta-2/chemistryABSTRACT
G proteins are activated when they associate with G protein-coupled receptors (GPCRs), often in response to agonist-mediated receptor activation. It is generally thought that agonist-induced receptor-G protein association necessarily promotes G protein activation and, conversely, that activated GPCRs do not interact with G proteins that they do not activate. Here we show that GPCRs can form agonist-dependent complexes with G proteins that they do not activate. Using cell-based bioluminescence resonance energy transfer (BRET) and luminescence assays we find that vasopressin V2 receptors (V2R) associate with both Gs and G12 heterotrimers when stimulated with the agonist arginine vasopressin (AVP). However, unlike V2R-Gs complexes, V2R-G12 complexes are not destabilized by guanine nucleotides and do not promote G12 activation. Activating V2R does not lead to signaling responses downstream of G12 activation, but instead inhibits basal G12-mediated signaling, presumably by sequestering G12 heterotrimers. Overexpressing G12 inhibits G protein receptor kinase (GRK) and arrestin recruitment to V2R and receptor internalization. Formyl peptide (FPR1 and FPR2) and Smoothened (Smo) receptors also form complexes with G12 that are insensitive to nucleotides, suggesting that unproductive GPCR-G12 complexes are not unique to V2R. These results indicate that agonist-dependent receptor-G protein association does not always lead to G protein activation and may in fact inhibit G protein activation.
Subject(s)
GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Bioluminescence Resonance Energy Transfer Techniques/methods , Cyclic AMP/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/physiology , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/physiology , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Ligands , Protein Binding/physiology , Receptors, Vasopressin/metabolism , Signal Transduction/physiology , Vasopressins/metabolism , beta-Arrestins/metabolismABSTRACT
Bright, photostable, and nontoxic fluorescent contrast agents are critical for biological imaging. "Self-healing" dyes, in which triplet states are intramolecularly quenched, enable fluorescence imaging by increasing fluorophore brightness and longevity, while simultaneously reducing the generation of reactive oxygen species that promote phototoxicity. Here, we systematically examine the self-healing mechanism in cyanine-class organic fluorophores spanning the visible spectrum. We show that the Baird aromatic triplet-state energy of cyclooctatetraene can be physically altered to achieve order of magnitude enhancements in fluorophore brightness and signal-to-noise ratio in both the presence and absence of oxygen. We leverage these advances to achieve direct measurements of large-scale conformational dynamics within single molecules at submillisecond resolution using wide-field illumination and camera-based detection methods. These findings demonstrate the capacity to image functionally relevant conformational processes in biological systems in the kilohertz regime at physiological oxygen concentrations and shed important light on the multivariate parameters critical to self-healing organic fluorophore design.
Subject(s)
Fluorescent Dyes/chemistry , Cell Line , Fluorescence , Humans , Microscopy, FluorescenceABSTRACT
G protein-coupled receptors (GPCRs) signal through activation of G proteins and subsequent modulation of downstream effectors. More recently, signaling mediated by ß-arrestin has also been implicated in important physiological functions. This has led to great interest in the identification of biased ligands that favor either G protein or ß-arrestin-signaling pathways. However, nearly all screening techniques for measuring ß-arrestin recruitment have required C-terminal receptor modifications that can in principle alter protein interactions and thus signaling. Here, we have developed a novel luminescence-based assay to measure ß-arrestin recruitment to the membrane or early endosomes by unmodified receptors. Our strategy uses NanoLuc, an engineered luciferase from Oplophorus gracilirostris (deep-sea shrimp) that is smaller and brighter than other well-established luciferases. Recently, several publications have explored functional NanoLuc split sites for use in complementation assays. We have identified a unique split site within NanoLuc and fused the corresponding N-terminal fragment to either a plasma membrane or early endosome tether and the C-terminal fragment to ß-arrestins, which form the basis for the MeNArC and EeNArC assays, respectively. Upon receptor activation, ß-arrestin is recruited to the membrane and subsequently internalized in an agonist concentration-dependent manner. This recruitment promotes complementation of the two NanoLuc fragments, thereby reconstituting functional NanoLuc, allowing for quantification of ß-arrestin recruitment with a single luminescence signal. Our assay avoids potential artifacts related to C-terminal receptor modification and has promise as a new generic assay for measuring ß-arrestin recruitment to diverse GPCR types in heterologous or native cells.
Subject(s)
Cell Membrane/metabolism , Luciferases/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism , Biological Assay/methods , Cells, Cultured , Humans , Ligands , Protein Binding , Signal Transduction , beta-Arrestins/chemistryABSTRACT
The neurotransmitter:sodium symporter (NSS) homolog LeuT from Aquifex aeolicus has proven to be a valuable model for studying the transport mechanism of the NSS family. Crystal structures have captured LeuT in key conformations visited during the transport cycle, allowing for the construction of a nearly complete model of transport, with much of the conformational dynamics studied by computational simulations. Here, we report crystal structures of LeuT representing new intermediate conformations between the outward-facing open and occluded states. These structures, combined with binding and accessibility studies, reveal details of conformational dynamics that can follow substrate binding at the central substrate binding site (S1) of LeuT in outward-facing states, suggesting a potential competition for direction between the outward-open and outward-occluded states at this stage during substrate transport. Our structures further support an intimate interplay between the protonation state of Glu290 and binding of Na1 that may ultimately regulate the outward-open-to-occluded transition.
Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Plasma Membrane Neurotransmitter Transport Proteins/chemistry , Plasma Membrane Neurotransmitter Transport Proteins/metabolism , Sodium/metabolism , Aquifex/metabolism , Crystallography, X-Ray , Leucine/metabolism , Molecular Dynamics Simulation , Protein Conformation , Symporters/chemistry , Symporters/metabolism , ThermodynamicsABSTRACT
The adhesion G-protein-coupled receptor (GPCR) latrophilin 3 (ADGRL3) has been associated with increased risk of attention deficit hyperactivity disorder (ADHD) and substance use in human genetic studies. Knockdown in multiple species leads to hyperlocomotion and altered dopamine signaling. Thus, ADGRL3 is a potential target for treatment of neuropsychiatric disorders that involve dopamine dysfunction, but its basic signaling properties are poorly understood. Identification of adhesion GPCR signaling partners has been limited by a lack of tools to acutely activate these receptors in living cells. Here, we design a novel acute activation strategy to characterize ADGRL3 signaling by engineering a receptor construct in which we could trigger acute activation enzymatically. Using this assay, we found that ADGRL3 signals through G12/G13 and Gq, with G12/13 the most robustly activated. Gα12/13 is a new player in ADGRL3 biology, opening up unexplored roles for ADGRL3 in the brain. Our methodological advancements should be broadly useful in adhesion GPCR research.