Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Neuro Oncol ; 26(6): 1109-1123, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38334125

ABSTRACT

BACKGROUND: Cellular senescence can have positive and negative effects on the body, including aiding in damage repair and facilitating tumor growth. Adamantinomatous craniopharyngioma (ACP), the most common pediatric sellar/suprasellar brain tumor, poses significant treatment challenges. Recent studies suggest that senescent cells in ACP tumors may contribute to tumor growth and invasion by releasing a senesecence-associated secretory phenotype. However, a detailed analysis of these characteristics has yet to be completed. METHODS: We analyzed primary tissue samples from ACP patients using single-cell, single-nuclei, and spatial RNA sequencing. We performed various analyses, including gene expression clustering, inferred senescence cells from gene expression, and conducted cytokine signaling inference. We utilized LASSO to select essential gene expression pathways associated with senescence. Finally, we validated our findings through immunostaining. RESULTS: We observed significant diversity in gene expression and tissue structure. Key factors such as NFKB, RELA, and SP1 are essential in regulating gene expression, while senescence markers are present throughout the tissue. SPP1 is the most significant cytokine signaling network among ACP cells, while the Wnt signaling pathway predominantly occurs between epithelial and glial cells. Our research has identified links between senescence-associated features and pathways, such as PI3K/Akt/mTOR, MYC, FZD, and Hedgehog, with increased P53 expression associated with senescence in these cells. CONCLUSIONS: A complex interplay between cellular senescence, cytokine signaling, and gene expression pathways underlies ACP development. Further research is crucial to understand how these elements interact to create novel therapeutic approaches for patients with ACP.


Subject(s)
Cellular Senescence , Craniopharyngioma , Machine Learning , Pituitary Neoplasms , Humans , Craniopharyngioma/metabolism , Craniopharyngioma/pathology , Craniopharyngioma/genetics , Pituitary Neoplasms/pathology , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Phenotype , Gene Expression Regulation, Neoplastic , Child , Male , Female
2.
medRxiv ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39211865

ABSTRACT

We investigated the effectiveness of navtemadlin (KRT-232) in treating recurrent glioblastoma. A surgical window-of-opportunity trial ( NCT03107780 ) was conducted on 21 patients to determine achievable drug concentrations within tumor tissue and examine mechanisms of response and resistance. Both 120 mg and 240 mg daily dosing achieved a pharmacodynamic impact. Sequencing of three recurrent tumors revealed an absence of TP53 -inactivating mutations, indicating alternative mechanisms of resistance. In patient-derived GBM models, the lower range of clinically achieved navtemadlin concentrations induced partial tumor cell death as monotherapy. However, combining navtemadlin with temozolomide increased apoptotic rates while sparing normal bone marrow cells in vitro, which in return underwent reversible growth arrest. These results indicate that clinically achievable doses of navtemadlin generate significant pharmacodynamic effects and suggest that combined treatment with standard-of-care DNA damaging chemotherapy is a route to durable survival benefits. Statement of significance: Tissue sampling during this clinical trial allowed us to assess mechanisms of response and resistance associated with navtemadlin treatment in recurrent GBM. We report that clinically achievable doses of navtemadlin induce pharmacodynamic effects in tumor tissue, and suggest combinations with standard-of-care chemotherapy for durable clinical benefit.

SELECTION OF CITATIONS
SEARCH DETAIL