Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mol Ther ; 31(8): 2422-2438, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37403358

ABSTRACT

Transient delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) into the central nervous system (CNS) for therapeutic genome editing could avoid limitations of viral vector-based delivery including cargo capacity, immunogenicity, and cost. Here, we tested the ability of cell-penetrant Cas9 RNPs to edit the mouse striatum when introduced using a convection-enhanced delivery system. These transient Cas9 RNPs showed comparable editing of neurons and reduced adaptive immune responses relative to one formulation of Cas9 delivered using AAV serotype 9. The production of ultra-low endotoxin Cas9 protein manufactured at scale further improved innate immunity. We conclude that injection-based delivery of minimally immunogenic CRISPR genome editing RNPs into the CNS provides a valuable alternative to virus-mediated genome editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Mice , Ribonucleoproteins/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Brain/metabolism
2.
Biochemistry ; 57(31): 4675-4689, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30004690

ABSTRACT

Kinases play a critical role in cellular signaling and are dysregulated in a number of diseases, such as cancer, diabetes, and neurodegeneration. Therapeutics targeting kinases currently account for roughly 50% of cancer drug discovery efforts. The ability to explore human kinase biochemistry and biophysics in the laboratory is essential to designing selective inhibitors and studying drug resistance. Bacterial expression systems are superior to insect or mammalian cells in terms of simplicity and cost effectiveness but have historically struggled with human kinase expression. Following the discovery that phosphatase coexpression produced high yields of Src and Abl kinase domains in bacteria, we have generated a library of 52 His-tagged human kinase domain constructs that express above 2 µg/mL of culture in an automated bacterial expression system utilizing phosphatase coexpression (YopH for Tyr kinases and lambda for Ser/Thr kinases). Here, we report a structural bioinformatics approach to identifying kinase domain constructs previously expressed in bacteria and likely to express well in our protocol, experiments demonstrating our simple construct selection strategy selects constructs with good expression yields in a test of 84 potential kinase domain boundaries for Abl, and yields from a high-throughput expression screen of 96 human kinase constructs. Using a fluorescence-based thermostability assay and a fluorescent ATP-competitive inhibitor, we show that the highest-expressing kinases are folded and have well-formed ATP binding sites. We also demonstrate that these constructs can enable characterization of clinical mutations by expressing a panel of 48 Src and 46 Abl mutations. The wild-type kinase construct library is available publicly via Addgene.


Subject(s)
Bacteria/metabolism , Binding Sites , Escherichia coli/metabolism , Humans , Phosphorylation , Protein Structure, Secondary , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-abl/metabolism , src-Family Kinases/metabolism
3.
Microb Cell Fact ; 11: 56, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22569138

ABSTRACT

BACKGROUND: Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein expression strains must be engineered and the parameters involved in producing disulfide bonded proteins must be understood. RESULTS: We have engineered a new E. coli protein expression strain named SHuffle, dedicated to producing correctly disulfide bonded active proteins to high yields within its cytoplasm. This strain is based on the trxB gor suppressor strain SMG96 where its cytoplasmic reductive pathways have been diminished, allowing for the formation of disulfide bonds in the cytoplasm. We have further engineered a major improvement by integrating into its chromosome a signal sequenceless disulfide bond isomerase, DsbC. We probed the redox state of DsbC in the oxidizing cytoplasm and evaluated its role in assisting the formation of correctly folded multi-disulfide bonded proteins. We optimized protein expression conditions, varying temperature, induction conditions, strain background and the co-expression of various helper proteins. We found that temperature has the biggest impact on improving yields and that the E. coli B strain background of this strain was superior to the K12 version. We also discovered that auto-expression of substrate target proteins using this strain resulted in higher yields of active pure protein. Finally, we found that co-expression of mutant thioredoxins and PDI homologs improved yields of various substrate proteins. CONCLUSIONS: This work is the first extensive characterization of the trxB gor suppressor strain. The results presented should help researchers design the appropriate protein expression conditions using SHuffle strains.


Subject(s)
Disulfides/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Cytoplasm/metabolism , Escherichia coli Proteins/genetics , Oxidation-Reduction , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Protein Folding , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Temperature , Thioredoxins/genetics , Thioredoxins/metabolism
5.
Curr Protoc Mol Biol ; 120: 31.10.1-31.10.19, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28967993

ABSTRACT

CRISPR-Cas systems have been harnessed as modular genome editing reagents for functional genomics and show promise to cure genetic diseases. Directed by a guide RNA, a Cas effector introduces a double stranded break in DNA and host cell DNA repair leads to the introduction of errors (e.g., to knockout a gene) or a programmed change. Introduction of a Cas effector and guide RNA as a purified Cas ribonucleoprotein complex (CasRNP) has recently emerged as a powerful approach to alter cell types and organisms. Not only does CasRNP editing exhibit increased efficacy and specificity, it avoids optimization and iteration of species-specific factors such as codon usage, promoters, and terminators. CasRNP editing has been rapidly adopted for research use in many contexts and is quickly becoming a popular method to edit primary cells for therapeutic application. This article describes how to make a Cas9 RNP and outlines its use for gene editing in human cells. © 2017 by John Wiley & Sons, Inc.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , CRISPR-Associated Protein 9 , Cell-Free System , Endonucleases/genetics , Endonucleases/isolation & purification , Endonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Editing/methods , Gene Expression , Gene Targeting/methods , Humans , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/isolation & purification , Recombinant Proteins , Transcription, Genetic
6.
Methods Enzymol ; 592: 1-26, 2017.
Article in English | MEDLINE | ID: mdl-28668116

ABSTRACT

Recombinant expression of large, multiprotein complexes is essential and often rate limiting for determining structural, biophysical, and biochemical properties of DNA repair, replication, transcription, and other key cellular processes. Baculovirus-infected insect cell expression systems are especially well suited for producing large, human proteins recombinantly, and multigene baculovirus systems have facilitated studies of multiprotein complexes. In this chapter, we describe a multigene baculovirus system called MacroBac that uses a Biobricks-type assembly method based on restriction and ligation (Series 11) or ligation-independent cloning (Series 438). MacroBac cloning and assembly is efficient and equally well suited for either single subcloning reactions or high-throughput cloning using 96-well plates and liquid handling robotics. MacroBac vectors are polypromoter with each gene flanked by a strong polyhedrin promoter and an SV40 poly(A) termination signal that minimize gene order expression level effects seen in many polycistronic assemblies. Large assemblies are robustly achievable, and we have successfully assembled as many as 10 genes into a single MacroBac vector. Importantly, we have observed significant increases in expression levels and quality of large, multiprotein complexes using a single, multigene, polypromoter virus rather than coinfection with multiple, single-gene viruses. Given the importance of characterizing functional complexes, we believe that MacroBac provides a critical enabling technology that may change the way that structural, biophysical, and biochemical research is done.


Subject(s)
Baculoviridae/genetics , Cloning, Molecular/methods , Multigene Family , Multiprotein Complexes/genetics , Recombinant Proteins/genetics , Animals , Base Sequence , Gene Expression , Genetic Vectors/genetics , Humans , Insecta/cytology , Insecta/genetics , Promoter Regions, Genetic
7.
ISME J ; 2(5): 542-50, 2008 May.
Article in English | MEDLINE | ID: mdl-18463612

ABSTRACT

Recently, there has been intense interest in the role of electron transfer by microbial communities in biogeochemical systems. We examined the process of iron oxidation by microbial biofilms in one of the most extreme environments on earth, where the inhabited water is pH 0.5-1.2 and laden with toxic metals. To approach the mechanism of Fe(II) oxidation as a means of cellular energy acquisition, we isolated proteins from natural samples and found a conspicuous and novel cytochrome, Cyt(572), which is unlike any known cytochrome. Both the character of its covalently bound prosthetic heme group and protein sequence are unusual. Extraction of proteins directly from environmental biofilm samples followed by membrane fractionation, detergent solubilization and gel filtration chromatography resulted in the purification of an abundant yellow-red protein. The purified protein has a cytochrome c-type heme binding motif, CxxCH, but a unique spectral signature at 572 nm, and thus is called Cyt(572). It readily oxidizes Fe(2+) in the physiologically relevant acidic regime, from pH 0.95-3.4. Other physical characteristics are indicative of a membrane-bound multimeric protein. Circular dichroism spectroscopy indicates that the protein is largely beta-stranded, and 2D Blue-Native polyacrylamide gel electrophoresis and chemical crosslinking independently point to a multi-subunit structure for Cyt(572). By analyzing environmental genomic information from biofilms in several distinctly different mine locations, we found multiple genetic variants of Cyt(572). MS proteomics of extracts from these biofilms substantiated the prevalence of these variants in the ecosystem. Due to its abundance, cellular location and Fe(2+) oxidation activity at very low pH, we propose that Cyt(572) provides a critical function for fitness within the ecological niche of these acidophilic microbial communities.


Subject(s)
Bacteria/enzymology , Cytochromes/metabolism , Iron/metabolism , Membrane Proteins/metabolism , Amino Acid Sequence , Biofilms , Cytochromes/chemistry , Cytochromes/genetics , Gene Expression Regulation, Bacterial/physiology , Hydrogen-Ion Concentration , Iron/chemistry , Molecular Sequence Data , Oxidation-Reduction
8.
J Mol Biol ; 374(5): 1319-32, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-17996895

ABSTRACT

Integral membrane proteins do not fare well when extracted from biological membranes and are unstable or lose activity in detergents commonly used for structure and function investigations. We show that phospholipid bicelles provide a valuable means of preserving alpha-helical membrane proteins in vitro by supplying a soluble lipid bilayer fragment. Both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/3-[(cholamidopropyl)dimethyl-ammonio]-1-propane sulfonate (Chaps) and DMPC/l-alpha-1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles dramatically increase the stability of the mammalian vision receptor rhodopsin as well as its apoprotein, opsin. Opsin is particularly unstable in detergent solution but can be directly purified into DMPC/Chaps. We show that opsin can also be directly purified in DMPC/DHPC bicelles to give correctly folded functional opsin, as shown by the ability to regenerate rhodopsin to approximately 70% yield. These well-characterised DMPC/DHPC bicelles enable us to probe the influence of bicelle properties on opsin stability. These bicelles are thought to provide DMPC bilayer fragments with most DHPC capping the bilayer edge, giving a soluble bilayer disc. Opsin stability is shown to be modulated by the q value, the ratio of DMPC to DHPC, which reflects changes in the bicelle size and, thus, proportion of DMPC bilayer present. The observed changes in stability also correlate with loss of opsin secondary structure as determined by synchrotron far-UV circular dichroism spectroscopy; the most stable bicelle results in the least helix loss. The inclusion of Chaps rather than DHPC in the DMPC/Chaps bicelles, however, imparts the greatest stability. This suggests that it is not just the DMPC bilayer fragment in the bicelles that stabilises the protein, but that Chaps provides additional stability either through direct interaction with the protein or by altering the DMPC/Chaps bilayer properties within the bicelle. The significant stability enhancements and preservation of secondary structure reported here in bicelles are pertinent to other membrane proteins, notably G-protein-coupled receptors, which are unstable in detergent solution.


Subject(s)
Phospholipids/chemistry , Rod Opsins/chemistry , Circular Dichroism , Lipid Bilayers , Protein Folding , Protein Structure, Secondary , Solubility , Spectrophotometry, Ultraviolet
9.
Biochemistry ; 41(15): 5015-23, 2002 Apr 16.
Article in English | MEDLINE | ID: mdl-11939798

ABSTRACT

The temperature dependence for the reduction of the oxidized primary electron donor P680(+) by the redox active tyrosine Y(Z) has been studied in oxygen-evolving photosystem II preparations from spinach. The observed temperature dependence is found to vary markedly with the S-state of the manganese cluster. In the higher oxidation states, S(2) and S(3), sub-microsecond P680(+) reduction exhibits activation energies of about 260 meV. In contrast, there is only a small temperature dependence for the sub-microsecond reaction in the S(0) and S(1) states (an activation energy of approximately 50 meV). Slower microsecond components of P680(+) reduction show an activation energy of about 250 meV which, within experimental error, is independent of the oxidation state of the Mn cluster. By combining these values with measurements of DeltaG for electron transfer, the reorganization energies for each component of P680(+) reduction have been calculated. High activation and reorganization energies are found for sub-microsecond P680(+) reduction in S(2) and S(3), demonstrating that these electron transfers are coupled to significant reorganization events which do not occur in the presence of the lower S-states. One interpretation of these results is that there is an increase in the net charge on the manganese cluster on the S(1) to S(2) transition which acts as a barrier to electron transfer in the higher S-states. This argues against the electroneutrality requirement for some models of the function of the manganese cluster and hence against a role for Y(Z) as a hydrogen abstractor on all S-state transitions. An alternative or additional possibility is that there are proton (or other ion) motions in the sub-microsecond phases in S(2) and S(3) which contribute to the large reorganization energies observed, these motions being absent in the S(0) and S(1) states. Indeed charge accumulation may directly cause the increased reorganization energy.


Subject(s)
Oxygen/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Electron Transport , Kinetics , Manganese/pharmacology , Oxidation-Reduction , Photosystem II Protein Complex , Spinacia oleracea/metabolism , Thermodynamics , Tyrosine
SELECTION OF CITATIONS
SEARCH DETAIL