ABSTRACT
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses continue to co-circulate, representing 2 major public health threats from respiratory infections with similar clinical presentations. SARS-CoV-2 and influenza vaccines can also now be co-administered. However, data on antibody responses to SARS-CoV-2 and influenza coinfection and vaccine co-administration remain limited. METHODS: We developed a 41-plex antibody immunity assay that can simultaneously characterize antibody landscapes to SARS-CoV-2/influenza/common human coronaviruses. We analyzed sera from 840 individuals (11-93 years), including sera from reverse transcription-polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2-positive (n = 218) and -negative (n = 120) cases, paired sera from SARS-CoV-2 vaccination (n = 29) and infection (n = 11), and paired sera from influenza vaccination (n = 56) and RT-PCR-confirmed influenza infection (n = 158) cases. Last, we analyzed sera collected from 377 individuals who exhibited acute respiratory illness (ARI) in 2020. RESULTS: This 41-plex assay has high sensitivity and specificity in detecting SARS-CoV-2 infections. It differentiated SARS-CoV-2 vaccination (antibody responses only to spike protein) from infection (antibody responses to both spike and nucleoprotein). No cross-reactive antibodies were induced to SARS-CoV-2 from influenza vaccination and infection, and vice versa, suggesting no interaction between SARS-CoV-2 and influenza antibody responses. However, cross-reactive antibodies were detected between spike proteins of SARS-CoV-2 and common human coronaviruses that were removed by serum adsorption. Among 377 individuals who exhibited ARI in 2020, 129 were influenza positive; none had serological evidence of SARS-CoV-2/influenza coinfections. CONCLUSIONS: Multiplex detection of antibody landscapes can provide in-depth analysis of the antibody protective immunity to SARS-CoV-2 in the context of other respiratory viruses, including influenza.
Subject(s)
COVID-19 , Coinfection , Influenza Vaccines , Influenza, Human , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Vaccines , Humans , Influenza, Human/diagnosis , Influenza, Human/prevention & control , Nucleoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , VaccinationABSTRACT
BACKGROUND: Influenza vaccine effectiveness was low in 2017-2018, yet circulating influenza A(H3N2) viruses were antigenically similar to cell-grown vaccine strains. Notably, most influenza vaccines are egg propagated. METHODS: Serum specimens were collected shortly after illness onset from 15 influenza A(H3N2) virus-infected cases and 15 uninfected hospitalized adults. Geometric mean titers against egg- and cell-grown influenza A/Hong Kong/4801/2014(H3N2) virus vaccine strains and representative circulating viruses (including A/Washington/16/2017) were determined by a microneutralization (MN) assay. Independent effects of strain-specific titers on susceptibility were estimated by logistic regression. RESULTS: MN titers against egg-grown influenza A/Hong Kong virus were significantly higher among vaccinated individuals (173 vs 41; P = 0.01). In unadjusted models, a 2-fold increase in titers against egg-grown influenza A/Hong Kong virus was not significantly protective (29% reduction; P = .09), but a similar increase in the cell-grown influenza A/Washington virus antibody titer (3C.2a2) was protective (60% reduction; P = .02). Higher egg-grown influenza A/Hong Kong virus titers were not significantly associated with infection, when adjusted for antibody titers against influenza A/Washington virus (15% reduction; P = .61). A 54% reduction in the odds of infection was observed with a 2-fold increase in titer against influenza A/Washington virus (P = not significant), adjusted for the titer against egg-grown influenza A/Hong Kong virus titer. CONCLUSION: Individuals vaccinated in 2017-2018 had high antibody titers against the egg-adapted vaccine strain and lower titers against circulating viruses. Titers against circulating but not egg-adapted strains were correlated with protection.
Subject(s)
Antibodies, Viral/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Adult , Animals , Antigens, Viral/immunology , Cell Line , Dogs , Female , Hemagglutination Inhibition Tests/methods , Hong Kong , Humans , Madin Darby Canine Kidney Cells , Male , Middle Aged , Seasons , Young AdultABSTRACT
Recently, novel highly pathogenic avian influenza H5Nx viruses (clade 2.3.4.4) caused outbreaks in US poultry. We evaluated the potential of a stockpiled A(H5N1) A/Anhui/1/2005 (clade 2.3.4) vaccine to elicit cross-reactive antibody responses to these emerging viruses. Sera from subjects who received 2 doses of MF59-adjuvanted A/Anhui/1/2005, or 1 dose of MF59-adjuvanted A/Anhui/1/2005 following priming with a clade 1 vaccine were characterized by microneutralization assays and modified hemagglutination inhibition (HI) assays. Only heterologous prime-boost vaccination induced modest cross-reactive HI antibody responses to H5Nx viruses. Heterologous prime-boost may provide a more effective vaccination strategy to broaden the antibody responses to emerging viruses.
Subject(s)
Antibody Formation , Cross Reactions , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Adjuvants, Immunologic , Adolescent , Adult , Antibodies, Viral/blood , Dose-Response Relationship, Drug , Hemagglutination Inhibition Tests , Humans , Immunization, Secondary , Influenza Vaccines/administration & dosage , Middle Aged , Randomized Controlled Trials as Topic , Young AdultABSTRACT
Introduction: External Quality Assessment (EQA) schemes are designed to provide a snapshot of laboratory proficiency, identifying issues and providing feedback to improve laboratory performance and inter-laboratory agreement in testing. Currently there are no international EQA schemes for seasonal influenza serology testing. Here we present a feasibility study for conducting an EQA scheme for influenza serology methods. Methods: We invited participant laboratories from industry, contract research organizations (CROs), academia and public health institutions who regularly conduct hemagglutination inhibition (HAI) and microneutralization (MN) assays and have an interest in serology standardization. In total 16 laboratories returned data including 19 data sets for HAI assays and 9 data sets for MN assays. Results: Within run analysis demonstrated good laboratory performance for HAI, with intrinsically higher levels of intra-assay variation for MN assays. Between run analysis showed laboratory and strain specific issues, particularly with B strains for HAI, whilst MN testing was consistently good across labs and strains. Inter-laboratory variability was higher for MN assays than HAI, however both assays showed a significant reduction in inter-laboratory variation when a human sera pool is used as a standard for normalization. Discussion: This study has received positive feedback from participants, highlighting the benefit such an EQA scheme would have on improving laboratory performance, reducing inter laboratory variation and raising awareness of both harmonized protocol use and the benefit of biological standards for seasonal influenza serology testing.
Subject(s)
Influenza, Human , Humans , Hemagglutination , Laboratories , Feasibility Studies , SeasonsABSTRACT
Although some adults infected with influenza 2009 A(H1N1)pdm09 viruses mounted high hemagglutination inhibition (HAI) antibody response, they still suffered from severe disease, or even death. Here, we analyzed antibody profiles in patients (n = 31, 17-65 years) admitted to intensive care units (ICUs) with lung failure and invasive mechanical ventilation use due to infection with A(H1N1)pdm09 viruses during 2009-2011. We performed a comprehensive analysis of the quality and quantity of antibody responses using HAI, virus neutralization, biolayer interferometry, enzyme-linked-lectin and enzyme-linked immunosorbent assays. At time of the ICU admission, 45% (14/31) of the patients had HAI antibody titers ≥ 80 in the first serum (S1), most (13/14) exhibited narrowly-focused HAI and/or anti-HA-head binding antibodies targeting single epitopes in or around the receptor binding site. In contrast, 42% (13/31) of the patients with HAI titers ≤ 10 in S1 had non-neutralizing anti-HA-stem antibodies against A(H1N1)pdm09 viruses. Only 19% (6/31) of the patients showed HA-specific IgG1-dominant antibody responses. Three of 5 fatal patients possessed highly focused cross-type HAI antibodies targeting the (K130 + Q223)-epitopes with extremely low avidity. Our findings suggest that narrowly-focused low-quality antibody responses targeting specific HA-epitopes may have contributed to severe infection of the lower respiratory tract.
Subject(s)
IgA Deficiency , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Antibodies, Viral , Antibody Formation , Critical Illness , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus , HumansABSTRACT
Influenza A(H7N9) viruses remain as a high pandemic threat. The continued evolution of the A(H7N9) viruses poses major challenges in pandemic preparedness strategies through vaccination. We assessed the breadth of the heterologous neutralizing antibody responses against the 3rd and 5th wave A(H7N9) viruses using the 1st wave vaccine sera from 4 vaccine groups: 1. inactivated vaccine with 2.8 µg hemagglutinin (HA)/dose + AS03A; 2. inactivated vaccine with 5.75 µg HA/dose + AS03A; 3. inactivated vaccine with 11.5 µg HA/dose + MF59; and 4. recombinant virus like particle (VLP) vaccine with 15 µg HA/dose + ISCOMATRIX™. Vaccine group 1 had the highest antibody responses to the vaccine virus and the 3rd/5th wave drifted viruses. Notably, the relative levels of cross-reactivity to the drifted viruses as measured by the antibody GMT ratios to the 5th wave viruses were similar across all 4 vaccine groups. The 1st wave vaccines induced robust responses to the 3rd and Pearl River Delta lineage 5th wave viruses but lower cross-reactivity to the highly pathogenic 5th wave A(H7N9) virus. The population in the United States was largely immunologically naive to the A(H7N9) HA. Seasonal vaccination induced cross-reactive neuraminidase inhibition and binding antibodies to N9, but minimal cross-reactive antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies to A(H7N9).
ABSTRACT
A(H3N2) influenza vaccine effectiveness (VE) was low during the 2016-19 seasons and varied by age. We analyzed neutralizing antibody responses to egg- and cell-propagated A(H3N2) vaccine and circulating viruses following vaccination in 375 individuals (aged 7 months to 82 years) across all vaccine-eligible age groups in 3 influenza seasons. Antibody responses to cell- versus egg-propagated vaccine viruses were significantly reduced due to the egg-adapted changes T160K, D225G, and L194P in the vaccine hemagglutinins. Vaccine egg adaptation had a differential impact on antibody responses across the different age groups. Immunologically naive children immunized with egg-adapted vaccines mostly mounted antibodies targeting egg-adapted epitopes, whereas those previously primed with infection produced broader responses even when vaccinated with egg-based vaccines. In the elderly, repeated boosts of vaccine egg-adapted epitopes significantly reduced antibody responses to the WT cell-grown viruses. Analysis with reverse genetic viruses suggested that the response to each egg-adapted substitution varied by age. No differences in antibody responses were observed between male and female vaccinees. Here, the combination of age-specific responses to vaccine egg-adapted substitutions, diverse host immune priming histories, and virus antigenic drift affected antibody responses following vaccination and may have led to the low and variable VE against A(H3N2) viruses across different age groups.
Subject(s)
Antibodies, Viral/immunology , Antibody Formation , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Ovum , Vaccination , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Dogs , Female , Humans , Infant , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Madin Darby Canine Kidney Cells , Male , Middle AgedABSTRACT
Ninety-five adults enrolled in the Etiology of Pneumonia in the Community study with negative admission influenza polymerase chain reaction (PCR) tests received influenza vaccination during hospitalization. Acute and convalescent influenza serology was performed. After vaccination, seropositive (≥1:40) hemagglutination antibody titers (HAI) were achieved in 55% to influenza A(H1N1)pdm09, 58% to influenza A(H3N2), 77% to influenza B (Victoria), and 74% to influenza B (Yamagata) viruses. Sixty-six (69%) patients seroconverted (≥4-fold HAI rise) to ≥1 strain. Failure to seroconvert was associated with diabetes, bacterial detection, baseline seropositive titers for influenza B (Yamagata), and influenza vaccination in the previous season.
Subject(s)
Antibodies, Viral/blood , Hospitalization , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Pneumonia/immunology , Adult , Aged , Chicago , Community-Acquired Infections/blood , Community-Acquired Infections/immunology , Female , Hemagglutination Inhibition Tests , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Male , Middle Aged , Pneumonia/blood , Prospective Studies , RNA, Viral , Seroconversion , Tennessee , VaccinationABSTRACT
Highly pathogenic avian influenza (HPAI) A(H5Nx) viruses continue to pose a pandemic threat. US national vaccine stockpiles are a cornerstone of the influenza pandemic preparedness plans. However, continual genetic and antigenic divergence of A(H5Nx) viruses requires the development of effective vaccination strategies using stockpiled vaccines and adjuvants for pandemic preparedness. Human sera collected from healthy adults who received either homologous (2 doses of a AS03A-adjuvanted A/turkey/Turkey/1/2005, A/Turkey), or heterologous (primed with AS03A-adjuvanted A/Indonesia/5/2005, A/Indo, followed by A/Turkey boost) prime-boost vaccination regimens were analyzed by hemagglutination inhibition and microneutralization assays against 8 wild-type HPAI A(H5Nx) viruses from 6 genetic clades. Molecular, structural and antigenic features of the A(H5Nx) viruses that could influence the cross-clade antibody responses were also explored. Compared with homologous prime-boost vaccinations, priming with a clade 2.1.3.2 antigen (A/Indo) followed by one booster dose of a clade 2.2.1 antigen (A/Turkey) administered 18 months apart did not compromise the antibody responses to the booster vaccine (A/Turkey), it also broadened the cross-clade antibody responses to several antigenically drifted variants from 6 heterologous clades, including an antigenically distant A(H5N8) virus (A/gyrfalcon/Washington/410886/2014, clade 2.3.4.4) that caused recent outbreaks in US poultry. The magnitude and breadth of the cross-clade antibody responses against emerging HPAI A(H5Nx) viruses are associated with genetic, structural and antigenic differences from the vaccine viruses and enhanced by the inclusion of an adjuvant. Heterologous prime-boost vaccination with AS03A adjuvanted vaccine offers a vaccination strategy to use existing stockpiled vaccines for pandemic preparedness against new emerging HPAI A(H5Nx) viruses.
ABSTRACT
BACKGROUND: Since influenza often presents non-specifically in infancy, we aimed to assess the extent to which existing respiratory surveillance platforms might underestimate the frequency of severe influenza disease among infants. METHODS: The Influenza and Respiratory Syncytial Virus in Infants (IRIS) study was a prospective observational study done at four hospitals in Albania, Jordan, Nicaragua, and the Philippines. We included acutely ill infants aged younger than 1 year admitted to hospital within 10 days or less of illness onset during two influenza seasons (2015-16 and 2016-17) in Albania, Jordan, and Nicaragua, and over a continuous 34 week period (2015-16) in the Philippines. We assessed the frequency of influenza virus infections by real-time RT-PCR (rRT-PCR) and serology. The main study outcome was seroconversion, defined as convalescent antibody titres more than or equal to four-fold higher than acute sera antibody titres, and convalescent antibody titres of 40 or higher. Seroconverison was confirmed by haemagglutination inhibition assay for influenza A viruses, and by hemagglutination inhibition assay and microneutralisation for influenza B viruses. FINDINGS: Between June 27, 2015, and April 21, 2017, 3634 acutely ill infants were enrolled, of whom 1943 were enrolled during influenza seasons and had complete acute-convalescent pairs and thus were included in the final analytical sample. Of the 1943 infants, 94 (5%) were influenza-positive by both rRT-PCR and serology, 58 (3%) were positive by rRT-PCR-only, and 102 (5%) were positive by serology only. Seroconversion to at least one of the influenza A or B viruses was observed among 196 (77%) of 254 influenza-positive infants. Of the 254 infants with influenza virus, 84 (33%) only had non-respiratory clinical discharge diagnoses (eg, sepsis, febrile seizures, dehydration, or other non-respiratory viral illness). A focus on respiratory diagnoses and rRT-PCR-confirmed influenza underdetects influenza-associated hospital admissions among infants by a factor of 2·6 (95% CI 2·0-3·6). Findings were unchanged when syndromic severe acute respiratory infection criteria were applied instead of clinical diagnosis. INTERPRETATION: If the true incidence of laboratory-confirmed influenza-associated hospital admissions among infants is at least twice that of previous estimates, this substantially increases the global burden of severe influenza and expands our estimates of the preventive value of maternal and infant influenza vaccination programmes. FUNDING: US Centers for Disease Control and Prevention.
Subject(s)
Antibodies, Viral/blood , DNA, Viral/analysis , Influenza B virus/genetics , Influenza B virus/immunology , Influenza, Human/diagnosis , Patient Admission/statistics & numerical data , Real-Time Polymerase Chain Reaction/methods , Albania/epidemiology , Female , Follow-Up Studies , Humans , Incidence , Infant , Infant, Newborn , Influenza, Human/epidemiology , Influenza, Human/virology , Jordan/epidemiology , Male , Nicaragua/epidemiology , Population Surveillance , Prevalence , Prospective Studies , Seasons , Time FactorsABSTRACT
Neutralizing antibodies against hemagglutinin (HA) of influenza viruses are considered the main immune mechanism that correlates with protection for influenza infections. Microneutralization (MN) assays are often used to measure neutralizing antibody responses in human sera after influenza vaccination or infection. Madine Darby Canine Kidney (MDCK) cells are the commonly used cell substrate for MN assays. However, currently circulating 3C.2a and 3C.3a A(H3N2) influenza viruses have acquired altered receptor binding specificity. The MDCK-SIAT1 cell line with increased α-2,6 sialic galactose moieties on the surface has proven to provide improved infectivity and more faithful replications than conventional MDCK cells for these contemporary A(H3N2) viruses. Here, we describe a MN assay using MDCK-SIAT1 cells that has been optimized to quantify neutralizing antibody titers to these contemporary A(H3N2) viruses. In this protocol, heat inactivated sera containing neutralizing antibodies are first serially diluted, then incubated with 100 TCID50/well of influenza A(H3N2) viruses to allow antibodies in the sera to bind to the viruses. MDCK-SIAT1 cells are then added to the virus-antibody mixture, and incubated for 18 - 20 h at 37 °C, 5% CO2 to allow A(H3N2) viruses to infect MDCK-SIAT1 cells. After overnight incubation, plates are fixed and the amount of virus in each well is quantified by an enzyme-linked immunosorbent assay (ELISA) using anti-influenza A nucleoprotein (NP) monoclonal antibodies. Neutralizing antibody titer is defined as the reciprocal of the highest serum dilution that provides ≥50% inhibition of virus infectivity.
Subject(s)
Antibodies, Monoclonal/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/virology , HumansABSTRACT
BACKGROUND: We determined influenza A(H1N1)pdm09 antibody levels before and after the first wave of the pandemic in an urban community in Dhaka, Bangladesh. METHODS: We identified a cohort of households by stratified random sampling. We collected baseline serum specimens during July-August 2009, just prior to the initial wave of the 2009 pandemic in this community and a second specimen during November 2009, after the pandemic peak. Paired sera were tested for antibodies against A(H1N1)pdm09 virus using microneutralization assay and hemagglutinin inhibition (HI) assay. A fourfold increase in antibody titer by either assay with a titer of ≥40 in the convalescent sera was considered a seroconversion. At baseline, an HI titer of ≥40 was considered seropositive. We collected information on clinical illness from weekly home visits. RESULTS: We tested 779 paired sera from the participants. At baseline, before the pandemic wave, 1% overall and 3% of persons >60 years old were seropositive. After the first wave of the pandemic, 211 (27%) individuals seroconverted against A(H1N1)pdm09. Children aged 5-17 years had the highest proportion (37%) of seroconversion. Among 264 (34%) persons with information on clinical illness, 191 (72%) had illness >3 weeks prior to collection of the follow-up sera and 73 (38%) seroconverted. Sixteen (22%) of these 73 seroconverted participants reported no clinical illness. CONCLUSION: After the first pandemic wave in Dhaka, one in four persons were infected by A(H1N1)pdm09 virus and the highest burden of infection was among the school-aged children. Seroprevalence studies supplement traditional surveillance systems to estimate infection burden.
Subject(s)
Antibodies, Viral/blood , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/epidemiology , Pandemics , Seroepidemiologic Studies , Adolescent , Adult , Aged , Bangladesh/epidemiology , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/immunology , Longitudinal Studies , Male , Middle Aged , Young AdultABSTRACT
Avian influenza viruses, notably H5 subtype viruses, pose a continuous threat to public health due to their pandemic potential. In recent years, influenza virus H5 subtype split vaccines with novel oil-in-water emulsion based adjuvants (e.g. AS03, MF59) have been shown to be safe, immunogenic, and able to induce broad immune responses in clinical trials, providing strong scientific support for vaccine stockpiling. However, whether such vaccines can provide protection from infection with emerging, antigenically distinct clades of H5 viruses has not been adequately addressed. Here, we selected two AS03-adjuvanted H5N1 vaccines from the US national pre-pandemic influenza vaccine stockpile and assessed whether the 2004-05 vaccines could provide protection against a 2014 highly pathogenic avian influenza (HPAI) H5N2 virus (A/northern pintail/Washington/40964/2014), a clade 2.3.4.4 virus responsible for mass culling of poultry in North America. Ferrets received two doses of adjuvanted vaccine containing 7.5µg of hemagglutinin (HA) from A/Vietnam/1203/2004 (clade 1) or A/Anhui/1/2005 (clade 2.3.4) virus either in a homologous or heterologous prime-boost vaccination regime. We found that both vaccination regimens elicited robust antibody responses against the 2004-05 vaccine viruses and could reduce virus-induced morbidity and viral replication in the lower respiratory tract upon heterologous challenge despite the low level of cross-reactive antibody titers to the challenge H5N2 virus. This study supports the value of existing stockpiled 2004-05 influenza H5N1 vaccines, combined with AS03-adjuvant for early use in the event of an emerging pandemic with H5N2-like clade 2.3.4.4 viruses.
Subject(s)
Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Viral/immunology , Cross Protection , Ducks , Ferrets , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N2 Subtype/genetics , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Influenza in Birds/virology , Influenza, Human/immunology , Influenza, Human/virology , Male , VaccinationABSTRACT
It is well established that virus neutralizing (VN) antibodies to hemagglutinin (HA) antigens of influenza A viruses provide optimal protection against antigenically matched strains of influenza A viruses. In contrast, little is known about the potential role of HA-specific, non-neutralizing antibodies in protection against human influenza illness at present. In this study, we show that individuals vaccinated with the 2014-15 seasonal inactivated influenza vaccine displayed strong A/H3N2 HA-specific antibody-dependent cell-mediated cytotoxicity (ADCC) activities against an antigenically drifted H3N2 virus, despite poor induction of cross-reactive neutralizing antibodies against the antigenic variant. Given that passive transfer of influenza HA-monospecific immune sera with negligible levels of HA-specific VN antibodies can often confer considerable cross protection against lethal challenge with heterologous influenza viruses in animal models, it is conceivable that HA-specific, non-neutralizing antibodies may provide certain degree of cross protection against antigenically drifted influenza A viruses through ADCC in case of influenza vaccine mismatches. This may have important implications for public health.
Subject(s)
Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Antigens, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antigens, Viral/blood , Cross Protection/immunology , Cross Reactions/immunology , Female , Healthy Volunteers , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/virology , Male , Middle Aged , Vaccination/methods , Vaccines, Inactivated/immunology , Young AdultABSTRACT
Human influenza A(H3N2) viruses that predominated during the moderately severe 2014-2015 influenza season differed antigenically from the vaccine component, resulting in reduced vaccine effectiveness (VE). To examine antibody responses to 2014-2015 inactivated influenza vaccine (IIV) and live-attenuated influenza vaccine (LAIV) among children and adolescents, we collected sera before and after vaccination from 150 children aged 3 to 17 years enrolled at health care facilities. Hemagglutination inhibition (HI) assays were used to assess the antibody responses to vaccine strains. We evaluated cross-reactive antibody responses against two representative A(H3N2) viruses that had antigenically drifted from the A(H3N2) vaccine component using microneutralization (MN) assays. Postvaccination antibody titers to drifted A(H3N2) viruses were higher following receipt of IIV (MN geometric mean titers [GMTs], 63 to 68; 38 to 45% achieved seroconversion) versus LAIV (MN GMT, 22; only 3 to 5% achieved seroconversion). In 9- to 17-year-olds, the highest MN titers were observed among IIV-vaccinated individuals who had received LAIV in the previous season. Among all IIV recipients aged 3 to 17 years, the strongest predictor of antibody responses to the drifted viruses was the prevaccination titers to the vaccine strain. The results of our study suggest that in an antigenically drifted influenza season, vaccination still induced cross-reactive antibody responses to drifted circulating A(H3N2) viruses, although higher antibody titers may be required for protection. Antibody responses to drifted A(H3N2) viruses following vaccination were influenced by multiple factors, including vaccine type and preexisting immunity from prior exposure.
Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, Viral/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Adolescent , Antibodies, Neutralizing/immunology , Antigenic Variation , Child , Child, Preschool , Cross Reactions , Female , Hemagglutination Inhibition Tests , Humans , Influenza B virus/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Male , Seasons , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunologyABSTRACT
BACKGROUND: The 2009 H1N1 influenza pandemic initially affected Mexico from April 2009 to July 2010. By August 2010, a fourth of the population had received the monovalent vaccine against the pandemic virus (A(H1N1)pdm09). To assess the proportion of the Mexican population who remained potentially susceptible to infection throughout the summer of 2010, we estimated the population seroprevalence to A(H1N1)pdm09 in a serosurvey of blood donors. METHODS: We evaluated baseline cross-reactivity to the pandemic strain and set the threshold for seropositivity using pre-pandemic (2005-2008) stored serum samples and sera from confirmed A(H1N1)pdm09 infected individuals. Between June and September 2010, a convenience sample serosurvey of adult blood donors, children, and adolescents was conducted in six states of Mexico. Sera were tested by the microneutralization (MN) and hemagglutination inhibition (HI) assays, and regarded seropositive if antibody titers were equal or exceeded 1:40 for MN and 1:20 for HI. Age-standardized seroprevalence were calculated using the 2010 National Census population. RESULTS: Sera from 1,484 individuals were analyzed; 1,363 (92%) were blood donors, and 121 (8%) children or adolescents aged ≤19 years. Mean age (standard deviation) was 31.4 (11.5) years, and 276 (19%) were women. A total of 516 (35%) participants declared history of influenza vaccination after April 2009. The age-standardized seroprevalence to A(H1N1)pdm09 was 48% by the MN and 41% by the HI assays, respectively. The youngest quintile, aged 1 to 22 years, had the highest the seroprevalence; 61% (95% confidence interval [CI]: 56, 66%) for MN, and 56% (95% CI: 51, 62%) for HI. CONCLUSIONS: Despite high transmission of A(H1N1)pdm09 observed immediately after its emergence and extensive vaccination, over a half of the Mexican population remained potentially susceptible to A(H1N1)pdm09 infection. Subsequent influenza seasons with high transmission of A(H1N1)pdm09, as 2011-2012 and 2013-2014, are compatible with these findings.
Subject(s)
Influenza, Human/epidemiology , Adult , Antibodies, Viral/immunology , Cross Reactions/immunology , Female , Hemagglutination Inhibition Tests/methods , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Male , Mexican Americans , Mexico/epidemiology , Seroepidemiologic Studies , Vaccination/methodsABSTRACT
Background. Influenza disproportionately impacts older adults while current vaccines have reduced effectiveness in the older population. Methods. We conducted a comprehensive evaluation of cellular and humoral immune responses of adults aged 50 years and older to the 2008-2009 seasonal trivalent inactivated influenza vaccine and assessed factors influencing vaccine response. Results. Vaccination increased hemagglutination inhibition and neutralizing antibody; however, 66.3% of subjects did not reach hemagglutination inhibition titers ≥ 40 for H1N1, compared with 22.5% for H3N2. Increasing age had a minor negative impact on antibody responses, whereas prevaccination titers were the best predictors of postvaccination antibody levels. Preexisting memory B cells declined with age, especially for H3N2. However, older adults still demonstrated a significant increase in antigen-specific IgG(+) and IgA(+) memory B cells postvaccination. Despite reduced frequency of preexisting memory B cells associated with advanced age, fold-rise in memory B cell frequency in subjects 60+ was comparable to subjects age 50-59. Conclusions. Older adults mounted statistically significant humoral and cell-mediated immune responses, but many failed to reach hemagglutination inhibition titers ≥40, especially for H1N1. Although age had a modest negative effect on vaccine responses, prevaccination titers were the best predictor of postvaccination antibody levels, irrespective of age.
ABSTRACT
BACKGROUND: Novel influenza viruses continue to pose a potential pandemic threat worldwide. In recent years, plants have been used to produce recombinant proteins, including subunit vaccines. A subunit influenza vaccine, HAC1, based on recombinant hemagglutinin from the 2009 pandemic A/California/04/2009 (H1N1) strain of influenza virus, has been manufactured using a plant virus-based transient expression technology in Nicotiana benthamiana plants and demonstrated to be immunogenic and safe in pre-clinical studies (Shoji et al., 2011). METHODS: A first-in-human, Phase 1, single-center, randomized, placebo-controlled, single-blind, dose escalation study was conducted to investigate safety, reactogenicity and immunogenicity of an HAC1 formulation at three escalating dose levels (15 µg, 45 µg and 90 µg) with and without Alhydrogel(®), in healthy adults 18-50 years of age (inclusive). Eighty participants were randomized into six study vaccine groups, a saline placebo group and an approved monovalent H1N1 vaccine group. Recipients received two doses of vaccine or placebo (except for the monovalent H1N1 vaccine cohort, which received a single dose of vaccine, later followed by a dose of placebo). RESULTS: The experimental vaccine was safe and well tolerated, and comparable to placebo and the approved monovalent H1N1 vaccine. Pain and tenderness at the injection site were the only local solicited reactions reported following vaccinations. Nearly all adverse events were mild to moderate in severity. The HAC1 vaccine was also immunogenic, with the highest seroconversion rates, based on serum hemagglutination-inhibition and virus microneutralization antibody titers, in the 90 µg non-adjuvanted HAC1 vaccine group after the second vaccine dose (78% and 100%, respectively). CONCLUSIONS: This is the first study demonstrating the safety and immunogenicity of a plant-produced subunit H1N1 influenza vaccine in healthy adults. The results support further clinical investigation of the HAC1 vaccine as well as demonstrate the feasibility of the plant-based technology for vaccine antigen production.