Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Lipids Health Dis ; 16(1): 181, 2017 Sep 25.
Article in English | MEDLINE | ID: mdl-28946872

ABSTRACT

BACKGROUND: Increased consumption of omega-3 (ω-3) fatty acids found in cold-water fish and fish oil has been reported to protect against obesity. A potential mechanism may be through reduction in adipocyte differentiation. Stearidonic acid (SDA), a plant-based ω-3 fatty acid, has been targeted as a potential surrogate for fish-based fatty acids; however, its role in adipocyte differentiation is unknown. This study was designed to evaluate the effects of SDA on adipocyte differentiation in 3T3-L1 cells. METHODS: 3T3-L1 preadipocytes were differentiated in the presence of SDA or vehicle-control. Cell viability assay was conducted to determine potential toxicity of SDA. Lipid accumulation was measured by Oil Red O staining and triglyceride (TG) quantification in differentiated 3T3-L1 adipocytes. Adipocyte differentiation was evaluated by adipogenic transcription factors and lipid accumulation gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). Fatty acid analysis was conducted by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). RESULTS: 3T3-L1 cells treated with SDA were viable at concentrations used for all studies. SDA treatment reduced lipid accumulation in 3T3-L1 adipocytes. This anti-adipogenic effect by SDA was a result of down-regulation of mRNA levels of the adipogenic transcription factors CCAAT/enhancer-binding proteins alpha and beta (C/EBPα, C/EBPß), peroxisome proliferator-activated receptor gamma (PPARγ), and sterol-regulatory element binding protein-1c (SREBP-1c). SDA treatment resulted in decreased expression of the lipid accumulation genes adipocyte fatty-acid binding protein (AP2), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD-1), lipoprotein lipase (LPL), glucose transporter 4 (GLUT4) and phosphoenolpyruvate carboxykinase (PEPCK). The transcriptional activity of PPARγ was found to be decreased with SDA treatment. SDA treatment led to significant EPA enrichment in 3T3-L1 adipocytes compared to vehicle-control. CONCLUSION: These results demonstrated that SDA can suppress adipocyte differentiation and lipid accumulation in 3T3-L1 cells through down-regulation of adipogenic transcription factors and genes associated with lipid accumulation. This study suggests the use of SDA as a dietary treatment for obesity.


Subject(s)
Adipocytes/drug effects , Cell Differentiation/drug effects , Fatty Acids, Omega-3/pharmacology , Gene Expression Regulation/drug effects , Lipid Metabolism/drug effects , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/metabolism , Animals , CCAAT-Enhancer-Binding Protein-beta/antagonists & inhibitors , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Proteins/antagonists & inhibitors , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Survival/drug effects , Fatty Acid Synthase, Type I/antagonists & inhibitors , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Fatty Acid-Binding Proteins/antagonists & inhibitors , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Glucose Transporter Type 4/antagonists & inhibitors , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Lipoprotein Lipase/antagonists & inhibitors , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Mice , PPAR gamma/antagonists & inhibitors , PPAR gamma/genetics , PPAR gamma/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/antagonists & inhibitors , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Stearoyl-CoA Desaturase/antagonists & inhibitors , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Sterol Regulatory Element Binding Protein 1/antagonists & inhibitors , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL