Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Hum Mol Genet ; 25(1): 9-23, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26494904

ABSTRACT

Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) cause the most common genetic form of human dwarfism, achondroplasia (ACH). Small chemical inhibitors of FGFR tyrosine kinase activity are considered to be viable option for treating ACH, but little experimental evidence supports this claim. We evaluated five FGFR tyrosine kinase inhibitors (TKIs) (SU5402, PD173074, AZD1480, AZD4547 and BGJ398) for their activity against FGFR signaling in chondrocytes. All five TKIs strongly inhibited FGFR activation in cultured chondrocytes and limb rudiment cultures, completely relieving FGFR-mediated inhibition of chondrocyte proliferation and maturation. In contrast, TKI treatment of newborn mice did not improve skeletal growth and had lethal toxic effects on the liver, lungs and kidneys. In cell-free kinase assays as well as in vitro and in vivo cell assays, none of the tested TKIs demonstrated selectivity for FGFR3 over three other FGFR tyrosine kinases. In addition, the TKIs exhibited significant off-target activity when screened against a panel of 14 unrelated tyrosine kinases. This was most extensive in SU5402 and AZD1480, which inhibited DDR2, IGF1R, FLT3, TRKA, FLT4, ABL and JAK3 with efficiencies similar to or greater than those for FGFR. Low target specificity and toxicity of FGFR TKIs thus compromise their use for treatment of ACH. Conceptually, different avenues of therapeutic FGFR3 targeting should be investigated.


Subject(s)
Achondroplasia/drug therapy , Pyrroles/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Animals , Benzamides/pharmacology , Cartilage/drug effects , Cartilage/metabolism , Catalysis/drug effects , Cells, Cultured , Chick Embryo , Chondrocytes/metabolism , Humans , Mice , Phenylurea Compounds/pharmacology , Piperazines/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Syndrome
2.
Hum Mol Genet ; 25(18): 3998-4011, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27466187

ABSTRACT

The short rib polydactyly syndromes (SRPS) are a group of recessively inherited, perinatal-lethal skeletal disorders primarily characterized by short ribs, shortened long bones, varying types of polydactyly and concomitant visceral abnormalities. Mutations in several genes affecting cilia function cause SRPS, revealing a role for cilia function in skeletal development. To identify additional SRPS genes and discover novel ciliary molecules required for normal skeletogenesis, we performed exome sequencing in a cohort of patients and identified homozygosity for a missense mutation, p.E80K, in Intestinal Cell Kinase, ICK, in one SRPS family. The p.E80K mutation abolished serine/threonine kinase activity, resulting in altered ICK subcellular and ciliary localization, increased cilia length, aberrant cartilage growth plate structure, defective Hedgehog and altered ERK signalling. These data identify ICK as an SRPS-associated gene and reveal that abnormalities in signalling pathways contribute to defective skeletogenesis.


Subject(s)
Abnormalities, Multiple/genetics , Hedgehog Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Short Rib-Polydactyly Syndrome/genetics , Skeleton/growth & development , Abnormalities, Multiple/physiopathology , Cilia/genetics , Cilia/pathology , Exome/genetics , Female , Humans , Infant , MAP Kinase Signaling System , Pedigree , Pregnancy , Sequence Analysis, DNA , Short Rib-Polydactyly Syndrome/pathology , Signal Transduction , Skeleton/abnormalities
3.
Biochim Biophys Acta ; 1852(5): 839-50, 2015 May.
Article in English | MEDLINE | ID: mdl-25558817

ABSTRACT

Aberrant fibroblast growth factor (FGF) signaling disturbs chondrocyte differentiation in skeletal dysplasia, but the mechanisms underlying this process remain unclear. Recently, FGF was found to activate canonical WNT/ß-catenin pathway in chondrocytes via Erk MAP kinase-mediated phosphorylation of WNT co-receptor Lrp6. Here, we explore the cellular consequences of such a signaling interaction. WNT enhanced the FGF-mediated suppression of chondrocyte differentiation in mouse limb bud micromass and limb organ cultures, leading to inhibition of cartilage nodule formation in micromass cultures, and suppression of growth in cultured limbs. Simultaneous activation of the FGF and WNT/ß-catenin pathways resulted in loss of chondrocyte extracellular matrix, expression of genes typical for mineralized tissues and alteration of cellular shape. WNT enhanced the FGF-mediated downregulation of chondrocyte proteoglycan and collagen extracellular matrix via inhibition of matrix synthesis and induction of proteinases involved in matrix degradation. Expression of genes regulating RhoA GTPase pathway was induced by FGF in cooperation with WNT, and inhibition of the RhoA signaling rescued the FGF/WNT-mediated changes in chondrocyte cellular shape. Our results suggest that aberrant FGF signaling cooperates with WNT/ß-catenin in suppression of chondrocyte differentiation.


Subject(s)
Cartilage/drug effects , Cell Differentiation/drug effects , Chondrocytes/drug effects , Fibroblast Growth Factors/pharmacology , Receptors, Fibroblast Growth Factor/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Blotting, Western , Cartilage/cytology , Cartilage/metabolism , Cell Differentiation/genetics , Cell Line, Tumor , Cells, Cultured , Chondrocytes/metabolism , Drug Synergism , Fibroblast Growth Factor 2/pharmacology , HEK293 Cells , Humans , Limb Buds/drug effects , Limb Buds/embryology , Limb Buds/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Microscopy, Confocal , Models, Biological , Rats , Receptors, Fibroblast Growth Factor/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Transcriptome/drug effects , Transcriptome/genetics , Wnt Proteins/genetics , Wnt Proteins/pharmacology , Wnt3A Protein/pharmacology , beta Catenin/genetics
4.
Biochim Biophys Acta ; 1841(9): 1308-17, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24953781

ABSTRACT

Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid present in fish oil, may exert cytotoxic and/or cytostatic effects on colon cancer cells when applied individually or in combination with some anticancer drugs. Here we demonstrate a selective ability of subtoxic doses of DHA to enhance antiproliferative and apoptotic effects of clinically useful cytokine TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in cancer but not normal human colon cells. DHA-mediated stimulation of TRAIL-induced apoptosis was associated with extensive engagement of mitochondrial pathway (Bax/Bak activation, drop of mitochondrial membrane potential, cytochrome c release), activation of endoplasmic reticulum stress response (CHOP upregulation, changes in PERK level), decrease of cellular inhibitor of apoptosis protein (XIAP, cIAP1) levels and significant changes in sphingolipid metabolism (intracellular levels of ceramides, hexosyl ceramides, sphingomyelines, sphingosines; HPLC/MS/MS). Interestingly, we found significant differences in representation of various classes of ceramides (especially C16:0, C24:1) between the cancer and normal colon cells treated with DHA and TRAIL, and suggested their potential role in the regulation of the cell response to the drug combination. These study outcomes highlight the potential of DHA for a new combination therapy with TRAIL for selective elimination of colon cancer cells via simultaneous targeting of multiple steps in apoptotic pathways.


Subject(s)
Docosahexaenoic Acids/pharmacology , Gene Expression Regulation, Neoplastic , Mitochondria/drug effects , Sphingolipids/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cytochromes c/metabolism , Drug Synergism , Endoplasmic Reticulum Stress/drug effects , Humans , Inhibitor of Apoptosis Proteins , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Signal Transduction , Sphingolipids/chemistry , Sphingolipids/classification , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
5.
Methods Mol Biol ; 2589: 455-466, 2023.
Article in English | MEDLINE | ID: mdl-36255642

ABSTRACT

During the preclinical development of small molecule inhibitors, compounds or compound libraries are typically first screened using purified target enzymes in vitro to select candidates with high potency. In the later stages of the development, however, functional cell-based assays may provide biologically more relevant data. In this chapter, we describe a detailed protocol for determining the potency of inhibitors targeting human histone deacetylase 6 in complex cellular environments. Cells are first treated with a dilution series of tested compounds, cell lysates separated by SDS-PAGE, and electrotransferred to a blotting membrane. The inhibitor potency is then determined indirectly by quantifying the levels of acetylated tubulin as a surrogate readout.


Subject(s)
Histone Deacetylase Inhibitors , Tubulin , Humans , Histone Deacetylase 6/metabolism , Tubulin/metabolism , Histone Deacetylase Inhibitors/pharmacology , Acetylation
6.
Carcinogenesis ; 32(1): 42-51, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21037225

ABSTRACT

TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) can selectively trigger apoptosis in various cancer cell types. However, many cancer cells are resistant to death receptor-mediated apoptosis. Combination therapy with platinum complexes may affect TRAIL-induced signaling via modulation of various steps in apoptotic pathways. Here, we show that cisplatin or a more potent platinum(IV) complex LA-12 used in 20-fold lower concentration enhanced killing effects of TRAIL in human colon and prostate cancer cell lines via stimulation of caspase activity and overall apoptosis. Both platinum complexes increased DR5 surface expression in colon cancer cells. Small interfering RNA-mediated DR5 silencing rescued cells from sensitizing effects of platinum drugs on TRAIL-induced caspase-8 activation and apoptosis, showing the functional importance of DR5 in the effects observed. In addition, both cisplatin and LA-12 triggered the relocalization of DR4 and DR5 receptors to lipid rafts and accelerated internalization of TRAIL, which may also affect TRAIL signaling. Collectively, modulations of the initial steps of the extrinsic apoptotic pathway at the level of DR5 and plasma membrane are important for sensitization of colon and prostate cancer cells to TRAIL-induced apoptosis mediated by LA-12 and cisplatin.


Subject(s)
Amantadine/analogs & derivatives , Apoptosis/drug effects , Cisplatin/pharmacology , Neoplasms/metabolism , Organoplatinum Compounds/pharmacology , Signal Transduction/drug effects , TNF-Related Apoptosis-Inducing Ligand/metabolism , Amantadine/pharmacology , Apoptosis/physiology , Blotting, Western , Cell Line, Tumor , Cell Separation , Flow Cytometry , Fluorescent Antibody Technique , Humans , Microscopy, Confocal , Protein Transport/drug effects , RNA Interference , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology
7.
Elife ; 62017 02 15.
Article in English | MEDLINE | ID: mdl-28199182

ABSTRACT

In-cell profiling enables the evaluation of receptor tyrosine activity in a complex environment of regulatory networks that affect signal initiation, propagation and feedback. We used FGF-receptor signaling to identify EGR1 as a locus that strongly responds to the activation of a majority of the recognized protein kinase oncogenes, including 30 receptor tyrosine kinases and 154 of their disease-associated mutants. The EGR1 promoter was engineered to enhance trans-activation capacity and optimized for simple screening assays with luciferase or fluorescent reporters. The efficacy of the developed, fully synthetic reporters was demonstrated by the identification of novel targets for two clinically used tyrosine kinase inhibitors, nilotinib and osimertinib. A universal reporter system for in-cell protein kinase profiling will facilitate repurposing of existing anti-cancer drugs and identification of novel inhibitors in high-throughput screening studies.


Subject(s)
Cytological Techniques/methods , Oncogene Proteins/analysis , Protein Kinases/analysis , Animals , Cell Line , Humans , Intravital Microscopy , Mice , Optical Imaging
8.
Oncotarget ; 6(41): 43679-97, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26544897

ABSTRACT

Despite recent advances in targeted therapeutics, administration of 5-fluorouracil (5-FU) remains a common clinical strategy for post-surgical treatment of solid tumors. Although it has been proposed that RNA metabolism is disturbed by 5-FU treatment, the key cytotoxic response is believed to be enzymatic inhibition of thymidylate synthase resulting in nucleotide pool disproportions. An operating p53 tumor suppressor signaling network is in many cases essential for the efficiency of chemotherapy, and malfunctions within this system remain a clinical obstacle. Since the fate of chemotherapy-insensitive tumor cells is rarely described, we performed a comparative analysis of 5-FU toxicity in p53-deficient cells and conclude that p53 acts as a facilitator rather than a gatekeeper of cell death. Although p53 can act as a regulator of several cellular stress responses, no rerouting of cell death mode was observed in absence of the tumor suppressor. Thus, the final death outcome of 5-FU-treated p53-/- cells is demonstrated to be caspase-dependent, but due to a slow pace, accumulation of mitochondrial reactive oxygen species contributes to necrotic characteristics. The oligomerization status of the p53 target gene DR5 is determined as a significant limiting factor for the initiation of caspase activity in an intracellular TRAIL-dependent manner. Using several experimental approaches, we further conclude that RNA-rather than DNA-related stress follows by caspase activation irrespectively of p53 status. A distinct 5-FU-induced stress mechanism is thereby functionally connected to a successive and discrete cell death signaling pathway. Finally, we provide evidence that silencing of PARP-1 function may be an approach to specifically target p53-deficient cells in 5-FU combinatorial treatment strategies. Together, our results disclose details of impaired cell death signaling engaged as a consequence of 5-FU chemotherapy. Obtained data will contribute to the comprehension of factors restraining 5-FU efficiency, and by excluding DNA as the main stress target in some cell types they propose alternatives to currently used and suggested synergistic treatment regimens.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Apoptosis/drug effects , Fluorouracil/pharmacology , RNA/drug effects , Signal Transduction/drug effects , Cell Line, Tumor , Fluorescent Antibody Technique , Humans , Immunoblotting , Immunoprecipitation , Microscopy, Electron, Transmission , Polymerase Chain Reaction , Signal Transduction/physiology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Transduction, Genetic , Tumor Suppressor Protein p53/metabolism
9.
Biochem Pharmacol ; 92(3): 415-24, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25285768

ABSTRACT

In search for novel strategies in colon cancer treatment, we investigated the unique ability of platinum(IV) complex LA-12 to efficiently enhance the killing effects of tumor necrosis factor-related apoptosis inducing ligand (TRAIL), and compared it with the sensitizing action of cisplatin. We provide the first evidence that LA-12 primes human colon cancer cells for TRAIL-induced cytotoxicity by p53-independent activation of the mitochondrial apoptotic pathway. The cooperative action of LA-12 and TRAIL was associated with stimulation of Bax/Bak activation, drop of mitochondrial membrane potential, caspase-9 activation, and a shift of the balance among Bcl-2 family proteins in favor of the pro-apoptotic members. In contrast to cisplatin, LA-12 was a potent inducer of ERK-mediated Noxa and BimL protein upregulation, and more effectively enhanced TRAIL-induced apoptosis in the absence of Bax. The cooperative action of LA-12 and TRAIL was augmented following the siRNA-mediated silencing of Mcl-1 in both Bax proficient/deficient cells. We newly demonstrated that LA-12 induced ERK-mediated c-Myc upregulation, and proved that c-Myc silencing inhibited the mitochondrial activation and apoptosis in colon cancer cells treated with LA-12 and TRAIL. The LA-12-mediated sensitization to TRAIL-induced apoptosis was demonstrated in several colon cancer cell lines, further underscoring the general relevance of our findings. The selective action of LA-12 was documented by preferential priming of cancer but not normal colon cancer cells to TRAIL killing effects. Our work highlights the promising potential of LA-12 over cisplatin to enhance the colon cancer cell sensitivity to TRAIL-induced apoptosis, and provides new mechanistic insights into their cooperative action.


Subject(s)
Amantadine/analogs & derivatives , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cisplatin/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Mitochondria/drug effects , Organoplatinum Compounds/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Amantadine/pharmacology , Apoptosis/genetics , Colonic Neoplasms/pathology , Genes, p53 , HCT116 Cells/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Tumor Cells, Cultured , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
10.
FEBS J ; 280(14): 3436-50, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23678861

ABSTRACT

Tumour necrosis factor (TNF) related apoptosis inducing ligand (TRAIL), a membrane-bound ligand from the TNF family, has attracted significant attention due to its rather specific and effective ability to induce apoptotic death in various types of cancer cells via binding to and activating its pro-apoptotic death receptors. However, a significant number of primary cancer cells often develop resistance to TRAIL treatment, and the signalling platform behind this phenomenon is not fully understood. Upon blocking endosomal acidification by the vacuolar ATPase (V-ATPase) inhibitors bafilomycin A1 (BafA1) or concanamycin A, we observed a significantly reduced initial sensitivity of several, mainly colorectal, tumour cell lines to TRAIL-induced apoptosis. In cells pretreated with these inhibitors, the TRAIL-induced processing of caspase-8 and the aggregation and trafficking of the TRAIL receptor complexes were temporarily attenuated. Nuclear factor κB or mitogen activated protein/stress kinase signalling from the activated TRAIL receptors remained unchanged, and neither possible lysosomal permeabilization nor acid sphingomyelinase was involved in this process. The cell surface expression of TRAIL receptors and their TRAIL-induced internalization were not affected by V-ATPase inhibitors. The inhibitory effect of BafA1, however, was blunted by knockdown of the caspase-8 inhibitor cFLIP. Altogether, the data obtained provide the first evidence that endosomal acidification could represent an important regulatory node in the proximal part of TRAIL-induced pro-apoptotic signalling.


Subject(s)
Antineoplastic Agents/pharmacology , Caspase 8/metabolism , Endosomes/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Cell Line, Tumor , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Down-Regulation , Enzyme Activation , Humans , Hydrogen-Ion Concentration , Macrolides/pharmacology , Protein Transport , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Signal Transduction/drug effects , Sphingolipids/physiology , Sphingomyelin Phosphodiesterase/metabolism , Vacuolar Proton-Translocating ATPases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL