Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Mater ; 23(6): 818-825, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38429520

ABSTRACT

Oxygen redox cathodes, such as Li1.2Ni0.13Co0.13Mn0.54O2, deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O2- ions forms O2 molecules trapped in nano-sized voids within the structure, which can be fully reduced to O2- on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O2-/O2 redox process and O2 loss. The closed voids that trap O2 grow on cycling, rendering more of the trapped O2 electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O2. Our findings implicate the thermodynamic driving force to form O2 as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes.

2.
Faraday Discuss ; 248(0): 318-326, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37781864

ABSTRACT

One of the most important challenges facing long cycle life Li-O2 batteries is solvent degradation. Even the most stable ethers, such as CH3O(CH2CH2O)CH3, degrade to form products including Li2CO3, which accumulates in the pores of the gas diffusion electrode on cycling leading to polarisation and capacity fading. In this work, we examine the build-up and distribution of Li2CO3 within the porous gas diffusion electrode during cycling and its link to the cell failure. We also demonstrate that the removal of Li2CO3 by a redox mediator can partially recover the cell performance and extend the cycle life of a Li-O2 battery.

3.
Faraday Discuss ; 248(0): 381-391, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37846514

ABSTRACT

The lithium-air (Li-air) battery offers one of the highest practical specific energy densities of any battery system at >400 W h kgsystem-1. The practical cell is expected to operate in air, which is flowed into the positive porous electrode where it forms Li2O2 on discharge and is released as O2 on charge. The presence of CO2 and H2O in the gas stream leads to the formation of oxidatively robust side products, Li2CO3 and LiOH, respectively. Thus, a gas handling system is needed to control the flow and remove CO2 and H2O from the gas supply. Here we present the first example of an integrated Li-air battery with in-line gas handling, that allows control over the flow and composition of the gas supplied to a Li-air cell and simultaneous evaluation of the cell and scrubber performance. Our findings reveal that O2 flow can drastically impact the capacity of cells and confirm the need for redox mediators. However, we show that current air-electrode designs translated from fuel cell technology are not suitable for Li-air cells as they result in the need for higher gas flow rates than required theoretically. This puts the scrubber under a high load and increases the requirements for solvent saturation and recapture. Our results clarify the challenges that must be addressed to realise a practical Li-air system and will provide vital insight for future modelling and cell development.

4.
Nat Chem ; 15(7): 1022-1029, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37264102

ABSTRACT

Although Li-air rechargeable batteries offer higher energy densities than lithium-ion batteries, the insulating Li2O2 formed during discharge hinders rapid, efficient re-charging. Redox mediators are used to facilitate Li2O2 oxidation; however, fast kinetics at a low charging voltage are necessary for practical applications and are yet to be achieved. We investigate the mechanism of Li2O2 oxidation by redox mediators. The rate-limiting step is the outer-sphere one-electron oxidation of Li2O2 to LiO2, which follows Marcus theory. The second step is dominated by LiO2 disproportionation, forming mostly triplet-state O2. The yield of singlet-state O2 depends on the redox potential of the mediator in a way that does not correlate with electrolyte degradation, in contrast to earlier views. Our mechanistic understanding explains why current low-voltage mediators (<+3.3 V) fail to deliver high rates (the maximum rate is at +3.74 V) and suggests important mediator design strategies to deliver sufficiently high rates for fast charging at potentials closer to the thermodynamic potential of Li2O2 oxidation (+2.96 V).

5.
Adv Mater ; 34(28): e2202552, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35560650

ABSTRACT

Despite being one of the most promising candidates for grid-level energy storage, practical aqueous zinc batteries are limited by dendrite formation, which leads to significantly compromised safety and cycling performance. In this study, by using single-crystal Zn-metal anodes, reversible electrodeposition of planar Zn with a high capacity of 8 mAh cm-2 can be achieved at an unprecedentedly high current density of 200 mA cm-2 . This dendrite-free electrode is well maintained even after prolonged cycling (>1200 cycles at 50 mA cm- 2 ). Such excellent electrochemical performance is due to single-crystal Zn suppressing the major sources of defect generation during electroplating and heavily favoring planar deposition morphologies. As so few defect sites form, including those that would normally be found along grain boundaries or to accommodate lattice mismatch, there is little opportunity for dendritic structures to nucleate, even under extreme plating rates. This scarcity of defects is in part due to perfect atomic-stitching between merging Zn islands, ensuring no defective shallow-angle grain boundaries are formed and thus removing a significant source of non-planar Zn nucleation. It is demonstrated that an ideal high-rate Zn anode should offer perfect lattice matching as this facilitates planar epitaxial Zn growth and minimizes the formation of any defective regions.

SELECTION OF CITATIONS
SEARCH DETAIL