ABSTRACT
PURPOSE: This study aims to assess the diagnostic utility and provide reporting recommendations for clinical DNA methylation episignature testing based on the cohort of patients tested through the EpiSign Clinical Testing Network. METHODS: The EpiSign assay utilized unsupervised clustering techniques and a support vector machine-based classification algorithm to compare each patient's genome-wide DNA methylation profile with the EpiSign Knowledge Database, yielding the result that was reported. An international working group, representing distinct EpiSign Clinical Testing Network health jurisdictions, collaborated to establish recommendations for interpretation and reporting of episignature testing. RESULTS: Among 2399 cases analyzed, 1667 cases underwent a comprehensive screen of validated episignatures, imprinting, and promoter regions, resulting in 18.7% (312/1667) positive reports. The remaining 732 referrals underwent targeted episignature analysis for assessment of sequence or copy-number variants (CNVs) of uncertain significance or for assessment of clinical diagnoses without confirmed molecular findings, and 32.4% (237/732) were positive. Cases with detailed clinical information were highlighted to describe various utility scenarios for episignature testing. CONCLUSION: Clinical DNA methylation testing including episignatures, imprinting, and promoter analysis provided by an integrated network of clinical laboratories enables test standardization and demonstrates significant diagnostic yield and clinical utility beyond DNA sequence analysis in rare diseases.
Subject(s)
DNA Methylation , Genetic Testing , Rare Diseases , Humans , DNA Methylation/genetics , Rare Diseases/genetics , Rare Diseases/diagnosis , Genetic Testing/standards , Genetic Testing/methods , Female , Promoter Regions, Genetic/genetics , Male , DNA Copy Number Variations/genetics , Child , Adult , Child, Preschool , Genomic Imprinting/geneticsABSTRACT
DMDP acetic acid [N-carboxymethyl-2,5-dideoxy-2,5-imino-D-mannitol] 5 from Stevia rebaudiana is the first isolated natural amino acid derived from iminosugars bearing an N-alkyl acid side chain; it is clear from GCMS studies that such derivatives with acetic and propionic acids are common in a broad range of plants including mulberry, Baphia, and English bluebells, but that they are very difficult to purify. Reaction of unprotected pyrrolidine iminosugars with aqueous glyoxal gives the corresponding N-acetic acids in very high yield; Michael addition of both pyrrolidine and piperidine iminosugars and that of polyhydroxylated prolines to tert-butyl acrylate give the corresponding N-propionic acids in which the amino group of Ć-alanine is incorporated into the heterocyclic ring. These easy syntheses allow the identification of this new class of amino acid in plant extracts and provide pure samples for biological evaluation. DMDP N-acetic and propionic acids are potent α-galactosidase inhibitors in contrast to potent Ć-galactosidase inhibition by DMDP.
Subject(s)
Acetates/chemical synthesis , Amino Acids/chemistry , Glycoside Hydrolases/antagonists & inhibitors , Imino Sugars/isolation & purification , Propionates/chemical synthesis , Pyrrolidines/chemical synthesis , Stevia/chemistry , Amino Acids/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Gas Chromatography-Mass Spectrometry , Glycine/chemistry , Glycosides/metabolism , Hydroxyproline/chemistry , Imino Sugars/chemistry , Piperidines/chemical synthesis , alpha-Galactosidase/antagonists & inhibitors , beta-Alanine/chemistry , beta-Galactosidase/antagonists & inhibitorsABSTRACT
A practical synthesis of the very rare sugar d-idose and the stable building blocks for d-idose, d-iduronic, and d-idonic acids from ido-heptonic acid requires only isopropylidene protection, Shing silica gel-supported periodate cleavage of the C6-C7 bond of the heptonic acid, and selective reduction of C1 and/or C6. d-Idose is the most unstable of all the aldohexoses and a stable precursor which be stored and then converted under very mild conditions into d-idose is easily prepared.
Subject(s)
Hexoses/chemical synthesis , Iduronic Acid/chemical synthesis , Sugar Acids/chemical synthesis , Carbohydrate Conformation , Glucose/chemistry , Heptoses/chemistry , Hexoses/chemistry , Iduronic Acid/chemistry , Molecular Structure , Sugar Acids/chemistryABSTRACT
The affinity of a series of iminosugar-based inhibitors exhibiting various ring sizes toward Hex A and their essential interactions with the enzyme active site were investigated. All the Hex A-inhibiting iminosugars tested formed hydrogen bonds with Arg178, Asp322, Tyr421 and Glu462 and had the favorable cation-π interaction with Trp460. Among them, DMDP amide (6) proved to be the most potent competitive inhibitor with a Ki value of 0.041 ĀµM. We analyzed the dynamic properties of both DMDP amide (6) and DNJNAc (1) in aqueous solution using molecular dynamics (MD) calculations; the distance of the interaction between Asp322 and 3-OH and Glu323 and 6-OH was important for stable interactions with Hex A, reducing fluctuations in the plasticity of the active site. DMDP amide (6) dose-dependently increased intracellular Hex A activity in the G269S mutant cells and restored Hex A activity up to approximately 43% of the wild type level; this effect clearly exceeded the border line treatment for Tay-Sachs disease, which is regarded as 10-15% of the wild type level. This is a significantly greater effect than that of pyrimethamine, which is currently in Phase 2 clinical trials. DMDP amide (6), therefore, represents a new promising pharmacological chaperone candidate for the treatment of Tay-Sachs disease.
Subject(s)
Catalytic Domain , Computer Simulation , Hexosaminidase A/metabolism , Sugars/metabolism , Sugars/pharmacology , Tay-Sachs Disease/drug therapy , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Hexosaminidase A/antagonists & inhibitors , Hexosaminidase A/chemistry , Hexosaminidase A/genetics , Humans , Molecular Dynamics Simulation , Mutation , Sugars/chemistry , Sugars/therapeutic useABSTRACT
In the search for alternative non-metabolizable inducers in the l-rhamnose promoter system, the synthesis of fifteen 6-deoxyhexoses from l-rhamnose demonstrates the value of synergy between biotechnology and chemistry. The readily available 2,3-acetonide of rhamnonolactone allows inversion of configuration at C4 and/or C5 of rhamnose to give 6-deoxy-d-allose, 6-deoxy-d-gulose and 6-deoxy-l-talose. Highly crystalline 3,5-benzylidene rhamnonolactone gives easy access to l-quinovose (6-deoxy-l-glucose), l-olivose and rhamnose analogue with C2 azido, amino and acetamido substituents. Electrophilic fluorination of rhamnal gives a mixture of 2-deoxy-2-fluoro-l-rhamnose and 2-deoxy-2-fluoro-l-quinovose. Biotechnology provides access to 6-deoxy-l-altrose and 1-deoxy-l-fructose.
Subject(s)
Deoxy Sugars/chemistry , Deoxyglucose/analogs & derivatives , Fructose/chemistry , Glucose/chemistry , Hexoses/chemistry , Rhamnose/chemistry , Biotechnology , Deoxyglucose/chemistry , OperonABSTRACT
PURPOSE: To investigate the phytochemical uptake following human consumption of Montmorency tart cherry (L. Prunus cerasus) and influence of selected phenolic acids on vascular smooth muscle cells in vitro. METHODS: In a randomised, double-blinded, crossover design, 12 healthy males consumed either 30 or 60Ā mL of Montmorency tart cherry concentrate. Following analysis of the juice composition, venous blood samples were taken before and 1, 2, 3, 5 and 8Ā h post-consumption of the beverage. In addition to examining some aspects of the concentrate contents, plasma concentrations of protocatechuic acid (PCA), vanillic acid (VA) and chlorogenic (CHL) acid were analysed by reversed-phase high-performance liquid chromatography (HPLC) with diode array for quantitation and mass spectrometry detection (LCMS) for qualitative purposes. Vascular smooth muscle cell migration and proliferation were also assessed in vitro. RESULTS: Both the 30 and 60Ā mL doses of Montmorency cherry concentrate contained high amounts of total phenolics (71.37Ā Ā±Ā 0.11; 142.73Ā Ā±Ā 0.22Ā mg/L) and total anthocyanins (62.47Ā Ā±Ā 0.31; 31.24Ā Ā±Ā 0.16Ā mg/L), as well as large quantities of CHL (0.205Ā Ā±Ā 0.24; 0.410Ā Ā±Ā 0.48Ā mg/L) and VA (0.253Ā Ā±Ā 0.84; 0.506Ā Ā±Ā 1.68Ā mg/L). HPLC/LCMS identified two dihydroxybenzoic acids (PCA and VA) in plasma following MC concentrate consumption. Both compounds were most abundant 1-2Ā h post-initial ingestion with traces detectable at 8Ā h post-ingestion. Cell migration was significantly influenced by the combination of PCA and VA, but not in isolation. There was no effect of the compounds on cell proliferation. CONCLUSIONS: These data show new information that phenolic compounds thought to exert vasoactive properties are bioavailable in vivo following MC consumption and subsequently can influence cell behaviour. These data may be useful for the design and interpretation of intervention studies investigating the health effects of Montmorency cherries.
Subject(s)
Hydroxybenzoates/pharmacology , Myocytes, Smooth Muscle/drug effects , Phytochemicals/pharmacology , Prunus avium/chemistry , Adult , Anthocyanins/blood , Anthocyanins/pharmacology , Antioxidants/analysis , Antioxidants/pharmacology , Beverages/analysis , Body Mass Index , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Chlorogenic Acid/blood , Chromatography, High Pressure Liquid , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Evaluation Studies as Topic , Fruit/chemistry , Humans , Hydroxybenzoates/blood , Male , Muscle, Smooth, Vascular/cytology , Oxidative Stress/drug effects , Phenols/blood , Phenols/pharmacology , Phytochemicals/blood , Vanillic Acid/blood , Young AdultABSTRACT
Reverse aldol opening renders amides of 3-hydroxyazetidinecarboxylic acids (3-OH-Aze) unstable above pH 8. Aze, found in sugar beet, is mis-incorporated for proline in peptides in humans and is associated with multiple sclerosis and teratogenesis. Aze-containing peptides may be oxygenated by prolyl hydroxylases resulting in potential damage of the protein by a reverse aldol of the hydroxyazetidine; this, rather than changes in conformation, may account for the deleterious effects of Aze. This paper describes the synthesis of 3-fluoro-Aze amino acids as hydroxy-Aze analogues which are not susceptible to aldol cleavage. 4-(Azidomethyl)-3-fluoro-Aze and 3,4-difluoroproline are new peptide building blocks. trans,trans-2,4-Dihydroxy-3-fluoroazetidine, an iminosugar, inhibits the growth of pancreatic cancer cells to a similar degree as gemcitabine.
Subject(s)
Antineoplastic Agents/pharmacology , Azetidines/pharmacology , Imino Sugars/pharmacology , Pancreatic Neoplasms/drug therapy , Peptides/chemistry , Proline/analogs & derivatives , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Azetidines/chemical synthesis , Azetidines/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Imino Sugars/chemistry , Molecular Conformation , Pancreatic Neoplasms/pathology , Proline/chemistry , Proline/pharmacology , Structure-Activity RelationshipABSTRACT
We investigated the outcome for children and young people with Early T-precursor acute lymphoblastic leukaemia (ETP-ALL), a recently described poor prognosis sub-group of T-ALL, treated on a contemporary protocol, UKALL 2003. After a median follow-up of 4 years and 10 months, the ETP sub-group, representing 16% of T-ALL patients, had non-significantly inferior 5-year event-free survival (76Ā·7% vs. 84Ā·6%, P = 0Ā·2) and overall survival (82Ā·4% vs. 90Ā·9%, P = 0Ā·1), and a higher relapse rate (18Ā·6% vs. 9Ā·6%, P = 0Ā·1) compared to typical T-ALL. ETP-ALL has an intermediate risk outcome, which does not warrant experimental treatment or first remission allogeneic transplant for the group universally.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Neoplasm Staging , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Treatment Outcome , Young AdultABSTRACT
All 16 stereoisomeric N-methyl 5-(hydroxymethyl)-3,4-dihydroxyproline amides have been synthesized from lactones accessible from the enantiomers of glucuronolactone. Nine stereoisomers, including all eight with a (3R)-hydroxyl configuration, are low to submicromolar inhibitors of Ć-N-acetylhexosaminidases. A structural correlation between the proline amides is found with the ADMDP-acetamide analogues bearing an acetamidomethylpyrrolidine motif. The proline amides are generally more potent than their ADMDP-acetamide equivalents. Ć-N-Acetylhexosaminidase inhibition by an azetidine ADMDP-acetamide analogue is compared to an azetidine carboxylic acid amide. None of the amides are good α-N-acetylgalactosaminidase inhibitors.
Subject(s)
Acetamides/chemistry , Amides/chemistry , Azetidinecarboxylic Acid/chemistry , Proline/analogs & derivatives , Proline/chemistry , beta-N-Acetylhexosaminidases/antagonists & inhibitors , Kinetics , Stereoisomerism , beta-N-Acetylhexosaminidases/chemistryABSTRACT
The scarcity and expense of access to L-sugars and other rare sugars have prevented the exploitation of their biological potential; for example D-psicose, only recently available, has been recognized as an important new food. Here we give the definitive and cheap synthesis of 99.4% pure L-glucose from D-glucose which requires purification of neither intermediates nor final product other than extraction into and removal of solvents; a simple crystallization will raise the purity to >99.8%.
Subject(s)
Glucose/chemistry , Glucuronic Acid/chemical synthesis , Glucuronic Acid/chemistry , Molecular ConformationABSTRACT
Analysis of genomic DNA methylation by generating epigenetic signature profiles (episignatures) is increasingly being implemented in genetic diagnosis. Here we report our experience using episignature analysis to resolve both uncomplicated and complex cases of neurodevelopmental disorders (NDDs). We analyzed 97 NDDs divided into (1) a validation cohort of 59 patients with likely pathogenic/pathogenic variants characterized by a known episignature and (2) a test cohort of 38 patients harboring variants of unknown significance or unidentified variants. The expected episignature was obtained in most cases with likely pathogenic/pathogenic variants (53/59 [90%]), a revealing exception being the overlapping profile of two SMARCB1 pathogenic variants with ARID1A/B:c.6200, confirmed by the overlapping clinical features. In the test cohort, five cases showed the expected episignature, including (1) novel pathogenic variants in ARID1B and BRWD3; (2) a deletion in ATRX causing MRXFH1 X-linked mental retardation; and (3) confirmed the clinical diagnosis of Cornelia de Lange (CdL) syndrome in mutation-negative CdL patients. Episignatures analysis of the in BAF complex components revealed novel functional protein interactions and common episignatures affecting homologous residues in highly conserved paralogous proteins (SMARCA2 M856V and SMARCA4 M866V). Finally, we also found sex-dependent episignatures in X-linked disorders. Implementation of episignature profiling is still in its early days, but with increasing utilization comes increasing awareness of the capacity of this methodology to help resolve the complex challenges of genetic diagnoses.
Subject(s)
DNA Methylation , Neurodevelopmental Disorders , Humans , DNA Methylation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis , Male , Female , Transcription Factors/genetics , Child , Epigenesis, Genetic , Child, Preschool , DNA-Binding Proteins/genetics , Mutation , AdolescentSubject(s)
Biomarkers, Tumor , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Quantitative Trait Loci , Sequence Deletion , Child , Female , Humans , Kaplan-Meier Estimate , Male , Polymorphism, Single Nucleotide , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Prognosis , United KingdomABSTRACT
The Ho crossed aldol condensation provides access to a series of carbon branched iminosugars as exemplified by the synthesis of enantiomeric pairs of isoDMDP, isoDGDP, and isoDAB, allowing comparison of their biological activities with three linear isomeric natural products DMDP, DGDP, and DAB and their enantiomers. L-IsoDMDP [(2S,3S,4R)-2,4-bis(hydroxymethyl)pyrrolidine-3,4-diol], prepared in 11 steps in an overall yield of 45% from d-lyxonolactone, is a potent specific competitive inhibitor of gut disaccharidases [K(i) 0.081 ĀµM for rat intestinal maltase] and is more effective in the suppression of hyperglycaemia in a maltose loading test than miglitol, a drug presently used in the treatment of late onset diabetes. The partial rescue of the defective F508del-CFTR function in CF-KM4 cells by L-isoDMDP is compared with miglustat and isoLAB in an approach to the treatment of cystic fibrosis.
Subject(s)
1-Deoxynojirimycin/analogs & derivatives , Angiogenesis Inhibitors/pharmacology , Biological Products/pharmacology , Enzyme Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors , Imino Sugars/pharmacology , 1-Deoxynojirimycin/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Dose-Response Relationship, Drug , Imino Sugars/chemical synthesis , Imino Sugars/chemistry , Molecular Conformation , Stereoisomerism , Structure-Activity Relationship , alpha-Glucosidases/metabolismABSTRACT
Crystal structures were obtained for the two C2 epimeric azido-ĆĀ³-lactones 2-azido-2-deoxy-3,5:6,7-di-O-isopropylidene-d-glycero-d-ido-heptono-1,4-lactone and 2-azido-2-deoxy-3,5:6,7-di-O-isopropylidene-d-glycero-d-gulo-heptono-1,4-lactone prepared from kinetic and thermodynamic azide displacements of a triflate derived from d-glucoheptonolactone. Azido-ĆĀ³-lactones are very useful intermediates in the synthesis of iminosugars and polyhydroxylated amino acids. In this study two epimeric azido-heptitols allow biotechnological transformations via Izumoring techniques to 8 of the 16 possible homonojirimycin analogues, 5 of which were isolated pure because of the lack of stereoselectivity of the final reductive amination. A side-by-side glycosidase inhibition profile of 11 of the possible 16 HNJ stereoisomers derived from d-glucose and d-mannose is presented.
Subject(s)
1-Deoxynojirimycin/analogs & derivatives , Azides/chemistry , Glucose/chemistry , Lactones/chemistry , Thermodynamics , 1-Deoxynojirimycin/chemistry , Kinetics , Models, Molecular , Molecular Conformation , StereoisomerismABSTRACT
The synthesis from l-arabinose of an azetidine analogue of 6,7-diepicastanospermine and its glycosidase inhibition profile are described.
Subject(s)
1-Deoxynojirimycin/chemistry , Arabinose/chemistry , Azetidines/chemistry , Indolizines/chemistry , Azetidines/chemical synthesis , Azetidines/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Glycoside Hydrolases/antagonists & inhibitors , Glycoside Hydrolases/metabolism , Molecular Conformation , Protein Binding , StereoisomerismABSTRACT
X-ray crystallography firmly established the relative stereochemistry of the title compound, C16H20N2O3. The acetonide ring adopts an envelope conformation with one of the O atoms as the flap and the piperidine ring adopts a slightly twisted boat conformation. The absolute configuration was determined by use of d-ribose as the starting material. The compound exists as O-HĆ¢ĀĀÆO hydrogen-bonded chains of mol-ecules running parallel to the b axis.
ABSTRACT
BACKGROUND/AIM: PDIA6 is a disulphide isomerase of the PDI family, known to mediate disulphide bond formation in the endoplasmic reticulum. However, PDI-related proteins also function in other parts of the cell and PDIA6 has been shown to be involved in many types of cancers. We previously identified PDIA6 as a putative Maspin interactor. Maspin has itself been implicated in prostate cancer progression. Our aim was to further explore the roles of Maspin in prostate cancer and establish whether PDIA6 is also involved in prostate cancer. MATERIALS AND METHODS: RNA levels of PDIA6 and Maspin in prostate cell lines were measured using RT-PCR. Bioinformatics analysis of the TCGA database was used to find RNA levels of PDIA6 and Maspin in prostate cancer. siRNAs were used to knock-down PDIA6, and proliferation and migration assays were conducted on those cells. RESULTS: PDIA6 and Maspin RNA were shown to be expressed at varying levels in prostate cell lines. RNAseq data showed that PDIA6 expression was significantly increased in prostate adenocarcinoma samples, while Maspin RNA expression was decreased. When PDIA6 expression was knocked-down using siRNA in prostate cell lines, proliferation was decreased substantially in the two prostate cancer cell lines (DU145 and PC3) and also decreased in the normal prostate cell line (PNT1a), though less strongly. CONCLUSION: PDIA6 expression is higher in prostate cancer cells compared to normal prostate cells. Decreasing PDIA6 expression decreases proliferation. Thus, PDIA6 is a promising target for prostate cancer therapeutics.
Subject(s)
Prostatic Neoplasms , Serpins , Male , Humans , Serpins/genetics , Serpins/metabolism , Prostatic Neoplasms/pathology , Protein Disulfide-Isomerases/genetics , RNA , Cell Line, Tumor , Genes, Tumor SuppressorABSTRACT
Background: Both promoters and untranslated regions (UTRs) have critical regulatory roles, yet variants in these regions are largely excluded from clinical genetic testing due to difficulty in interpreting pathogenicity. The extent to which these regions may harbour diagnoses for individuals with rare disease is currently unknown. Methods: We present a framework for the identification and annotation of potentially deleterious proximal promoter and UTR variants in known dominant disease genes. We use this framework to annotate de novo variants (DNVs) in 8,040 undiagnosed individuals in the Genomics England 100,000 genomes project, which were subject to strict region-based filtering, clinical review, and validation studies where possible. In addition, we performed region and variant annotation-based burden testing in 7,862 unrelated probands against matched unaffected controls. Results: We prioritised eleven DNVs and identified an additional variant overlapping one of the eleven. Ten of these twelve variants (82%) are in genes that are a strong match to the individual's phenotype and six had not previously been identified. Through burden testing, we did not observe a significant enrichment of potentially deleterious promoter and/or UTR variants in individuals with rare disease collectively across any of our region or variant annotations. Conclusions: Overall, we demonstrate the value of screening promoters and UTRs to uncover additional diagnoses for previously undiagnosed individuals with rare disease and provide a framework for doing so without dramatically increasing interpretation burden.
ABSTRACT
Acquiring a mechanistic understanding of the processes underlying the renal clearance of drug molecules in man has been hampered by a lack of robust in vitro models of human proximal tubules. Several human renal epithelial cell lines derived from the renal cortex are available, but few have been characterised in detail in terms of transporter expression. This includes the HK-2 proximal tubule cell line, which has been used extensively as a model of nephrotoxicity. The aim of this study was to investigate the expression and function of drug transporters in HK-2 cells and their suitability as an in vitro model of the human proximal tubule. qPCR showed no mRNA expression of the SLC22 transporter family (OAT1, OAT3, OCT2) in HK-2 cells compared to renal cortex samples. In contrast, SLC16A1 (MCT1), which is important in the uptake of monocarboxylates, and SLCO4C1 (OATP4C1) were expressed in HK-2 cells. The functional expression of these transporters was confirmed by uptake studies using radiolabelled prototypic substrates DL-lactate and digoxin, respectively. The mRNA expression of apical membrane efflux transporters ABCB1 (MDR1) and several members of the ABCC family (multidrug resistance proteins, MRPs) was shown by qPCR. ABCG1 (BCRP) was not detected. The efflux of Hoechst 33342, a substrate for MDR1, was blocked by MDR1 inhibitor cyclosporin A, suggesting the functional expression of this transporter. Similarly, the efflux of the MRP-specific fluorescent dye glutathione methylfluorescein was inhibited by the MRP inhibitor MK571. Taken together, the results of this study suggest that HK-2 cells are of limited value as an in vitro model of drug transporter expression in the human proximal tubule.
Subject(s)
Epithelial Cells/metabolism , Kidney Tubules, Proximal/metabolism , Membrane Transport Proteins/biosynthesis , ATP Binding Cassette Transporter, Subfamily B/biosynthesis , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/biosynthesis , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Biological Transport , Cell Line , Humans , Kidney Cortex/cytology , Kidney Cortex/metabolism , Kidney Tubules, Proximal/cytology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/biosynthesis , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA, Messenger/genetics , Symporters/biosynthesis , Symporters/genetics , Symporters/metabolismABSTRACT
We investigated the benefit of adding all-trans retinoic acid (ATRA) to chemotherapy for younger patients with nonacute promyelocytic acute myeloid leukemia and high-risk myelodysplastic syndrome, and considered interactions between treatment and molecular markers. Overall, 1075 patients less than 60 years of age were randomized to receive or not receive ATRA in addition to daunorubicin/Ara-C/thioguanine chemotherapy with Ara-C at standard or double standard dose. There were data on FLT3 internal tandem duplications and NPM1 mutations (n = 592), CEBPA mutations (n = 423), and MN1 expression (n = 195). The complete remission rate was 68% with complete remission with incomplete count recovery in an additional 16%; 8-year overall survival was 32%. There was no significant treatment effect for any outcome, with no significant interactions between treatment and demographics, or cytarabine randomization. Importantly, there were no interactions by FLT3/internal tandem duplications, NPM1, or CEBPA mutation. There was a suggestion that ATRA reduced relapse in patients with lower MN1 levels, but no significant effect on overall survival. Results were consistent when restricted to patients with normal karyotype. ATRA has no overall effect on treatment outcomes in this group of patients. The study did not identify any subgroup of patients likely to derive a significant survival benefit from the addition of ATRA to chemotherapy.