ABSTRACT
In pancreatic ductal adenocarcinoma (PDAC), early onset of hypoxia triggers remodeling of the extracellular matrix, epithelial-to-mesenchymal transition, increased cell survival, the formation of cancer stem cells, and drug resistance. Hypoxia in PDAC is also associated with the development of collagen-rich, fibrous extracellular stroma (desmoplasia), resulting in severely impaired drug penetration. To overcome these daunting challenges, we created polymer nanoparticles (polymersomes) that target and penetrate pancreatic tumors, reach the hypoxic niches, undergo rapid structural destabilization, and release the encapsulated drugs. In vitro studies indicated a high cellular uptake of the polymersomes and increased cytotoxicity of the drugs under hypoxia compared to unencapsulated drugs. The polymersomes decreased tumor growth by nearly 250% and significantly increased necrosis within the tumors by 60% in mice compared to untreated controls. We anticipate that these polymer nanoparticles possess a considerable translational potential for delivering drugs to solid hypoxic tumors.
Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Hypoxia/drug therapy , Nanoparticles/chemistry , Pancreatic Neoplasms/drug therapy , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Nude , Neoplastic Stem Cells/drug effects , Polymers/chemistryABSTRACT
Bone metastatic disease of prostate cancer (PCa) is incurable and progression in bone is largely dictated by tumor-stromal interactions in the bone microenvironment. We showed previously that bone neutrophils initially inhibit bone metastatic PCa growth yet metastatic PCa becomes resistant to neutrophil response. Further, neutrophils isolated from tumor-bone lost their ability to suppress tumor growth through unknown mechanisms. With this study, our goal was to define the impact of metastatic PCa on neutrophil function throughout tumor progression and to determine the potential of neutrophils as predictive biomarkers of metastatic disease. Using patient peripheral blood polymorphonuclear neutrophils (PMNs), we identified that PCa progression dictates PMN cell surface markers and gene expression, but not cytotoxicity against PCa. Importantly, we also identified a novel phenomenon in which second generation androgen deprivation therapy (ADT) suppresses PMN cytotoxicity via increased transforming growth factor beta receptor I (TßRI). High dose testosterone and genetic or pharmacologic TßRI inhibition rescued androgen receptor-mediated neutrophil suppression and restored neutrophil anti-tumor immune response. These studies highlight the ability to leverage standard-care ADT to generate neutrophil anti-tumor responses against bone metastatic PCa.
Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Androgens , Neutrophils/metabolism , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Bone Neoplasms/drug therapy , Bone Neoplasms/secondary , Cell Line, Tumor , Tumor MicroenvironmentABSTRACT
MicroRNAs (miRNAs) post-transcriptionally repress complementary target gene expression and can contribute to cell differentiation. The coordinate expression of miRNA-183 family members (miR-183, miR-96, and miR-182) has been demonstrated in sensory cells of the mouse inner ear and other vertebrate sensory organs. To further examine hair cell miRNA expression in the mouse inner ear, we have analyzed miR-183 family expression in wild type animals and various mutants with defects in neurosensory development. miR-183 family member expression follows neurosensory cell specification, exhibits longitudinal (basal-apical) gradients in maturating cochlear hair cells, and is maintained in sensory neurons and most hair cells into adulthood. Depletion of hair cell miRNAs resulting from Dicer1 conditional knockout (CKO) in Atoh1-Cre transgenic mice leads to more disparate basal-apical gene expression profiles and eventual hair cell loss. Results suggest that hair cell miRNAs subdue cochlear gradient gene expression and are required for hair cell maintenance and survival.
Subject(s)
Cell Differentiation/genetics , Cell Proliferation , Hair Cells, Auditory/physiology , MicroRNAs/physiology , Animals , Cell Survival/genetics , Cell Survival/physiology , Cells, Cultured , Cluster Analysis , Embryo, Mammalian , Gene Expression Profiling , Gene Expression Regulation, Developmental , Hair Cells, Auditory/metabolism , Humans , Mice , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Microarray Analysis , Multigene Family/genetics , Multigene Family/physiology , Neuroepithelial Cells/metabolism , Neuroepithelial Cells/physiologyABSTRACT
Alcohol-associated liver disease (AALD) is a major cause of liver disorders worldwide. Current treatment options are limited, especially for AALD-associated fibrosis. Promising approaches include RNA interference for miR-155 overexpression in Kupffer cells (KCs), as well as the use of CXCR4 antagonists that inhibit the activation of hepatic stellate cells (HSCs) through the CXCL12/CXCR4 axis. The development of dual-functioning nanoparticles for the effective delivery of antifibrotic RNA together with a CXCR4 inhibitor thus promises to improve the treatment of AALD fibrosis. In this study, cholesterol-modified polymeric CXCR4 inhibitor (Chol-PCX) was synthesized and used to encapsulate anti-miR-155 or non-coding (NC) miRNA in the form of Chol-PCX/miRNA nanoparticles. The results indicate that the nanoparticles induce a significant miR-155 silencing effect both in vitro and in vivo. Treatment with the Chol-PCX/anti-miR-155 particles in a model of moderate alcohol consumption with secondary liver insult resulted in a significant reduction in aminotransferase enzymes as well as collagen content in the liver parenchyma. Overall, our data support the use of Chol-PCX as a carrier for anti-miR-155 for the combined therapeutic inhibition of CXCR4 and miR-155 expression as a way to improve fibrotic damage in the liver.
ABSTRACT
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a formidable challenge for patients and clinicians. OBJECTIVE: To analyze the distribution of 31 different markers in tumor and stromal portions of the tumor microenvironment (TME) and identify immune cell populations to better understand how neoplastic, non-malignant structural, and immune cells, diversify the TME and influence PDAC progression. METHODS: Whole slide imaging (WSI) and cyclic multiplexed-immunofluorescence (MxIF) was used to collect 31 different markers over the course of nine distinctive imaging series of human PDAC samples. Image registration and machine learning algorithms were developed to largely automate an imaging analysis pipeline identifying distinct cell types in the TME. RESULTS: A random forest algorithm accurately predicted tumor and stromal-rich areas with 87% accuracy using 31 markers and 77% accuracy using only five markers. Top tumor-predictive markers guided downstream analyses to identify immune populations effectively invading into the tumor, including dendritic cells, CD4+ T cells, and multiple immunoregulatory subtypes. CONCLUSIONS: Immunoprofiling of PDAC to identify differential distribution of immune cells in the TME is critical for understanding disease progression, response and/or resistance to treatment, and the development of new treatment strategies.
Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Machine Learning , Pancreatic Neoplasms/metabolism , Stromal Cells/metabolism , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Female , Fluorescent Antibody Technique , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Tumor Microenvironment/immunologyABSTRACT
Acute kidney injury (AKI) is characterized by a sudden decrease in renal function and impacts growing number of people worldwide. RNA interference (RNAi) showed potential to treat diseases with no or limited conventional therapies, including AKI. Suitable carriers are needed to protect and selectively deliver RNAi to target cells to fully explore this therapeutic modality. Here, we report on the synthesis of chitosan modified with α-cyclam-p-toluic acid (C-CS) as a novel siRNA carrier for targeted delivery to injured kidneys. We demonstrate that conjugation of the α-cyclam-p-toluic acid to chitosan imparts the C-CS polymer with targeting and antagonistic properties to cells overexpressing chemokine receptor CXCR4. In contrast, the parent α-cyclam-p-toluic acid showed no such properties. Self-assembled C-CS/siRNA nanoparticles rapidly accumulate in the injured kidneys and show long retention in renal tubules. Apoptosis and metabolic and inflammatory pathways induced by p53 are important pathological mechanisms in the development of AKI. Nanoparticles with siRNA against p53 (sip53) were formulated and intravenously injected for attenuation of IRI-AKI. Due to the favorable accumulation in injured kidneys, the treatment with C-CS/sip53 decreased renal injury, extent of renal apoptosis, macrophage and neutrophil infiltration, and improved renal function. Overall, our study suggests that C-CS/siRNA nanoparticles have the potential to effectively accumulate and deliver therapeutic siRNAs to injured kidneys through CXCR4 binding, providing a novel way for AKI therapy.
Subject(s)
Acute Kidney Injury , Chitosan , RNA, Small Interfering , Reperfusion Injury , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Chitosan/chemistry , Drug Carriers , Humans , Kidney/metabolism , RNA, Small Interfering/therapeutic use , Reperfusion Injury/drug therapy , Tumor Suppressor Protein p53/metabolismABSTRACT
The creation of several prestin knockout and knockin mouse lines has demonstrated the importance of the intrinsic outer hair cell membrane protein prestin to mammalian hearing. However, the structure of prestin remains largely unknown, with even its major features in dispute. Several studies have suggested that prestin forms homo-oligomers that may be stabilized by disulfide bonds. Our phylogenetic analysis of prestin sequences across chordate classes suggested that the cysteinyl residues could be divided into three groups, depending on the extent of their conservation between prestin orthologs and paralogs or homologs. An alanine scan functional analysis was performed of all nine cysteinyl positions in mammalian prestin. Prestin function was assayed by measurement of prestin-associated nonlinear capacitance. Of the nine cysteine-alanine substitution mutations, all were properly membrane targeted and all demonstrated nonlinear capacitance. Four mutations (C124A, C192A, C260A, and C415A), all in nonconserved cysteinyl residues, significantly differed in their nonlinear capacitance properties compared with wild-type prestin. In the two most severely disrupted mutations, substitution of the polar residue seryl for cysteinyl restored normal function in one (C415S) but not the other (C124S). We assessed the relationship of prestin oligomerization to cysteine position using fluorescence resonance energy transfer. With one exception, cysteine-alanine substitutions did not significantly alter prestin-prestin interactions. The exception was C415A, one of the two nonconserved cysteinyl residues whose mutation to alanine caused the most disruption in function. We suggest that no disulfide bond is essential for prestin function. However, C415 likely participates by hydrogen bonding in both nonlinear capacitance and oligomerization.
Subject(s)
Anion Transport Proteins/chemistry , Anion Transport Proteins/genetics , Cysteine/genetics , Hair Cells, Auditory, Outer/physiology , Phylogeny , Amino Acid Sequence , Amino Acid Substitution/genetics , Animals , Anion Transport Proteins/metabolism , Conserved Sequence , Disulfides/chemistry , Disulfides/metabolism , Fluorescence Resonance Energy Transfer , Gerbillinae , HEK293 Cells , Humans , Hydrogen Bonding , Mammals , Mice , Models, Biological , Molecular Sequence Data , Protein Structure, Tertiary , Structure-Activity Relationship , Sulfate TransportersABSTRACT
Congenital aortic valve stenosis (CAVS) affects up to 10% of the world population without medical therapies to treat the disease. New molecular targets are continually being sought that can halt CAVS progression. Collagen deregulation is a hallmark of CAVS yet remains mostly undefined. Here, histological studies were paired with high resolution accurate mass (HRAM) collagen-targeting proteomics to investigate collagen fiber production with collagen regulation associated with human AV development and pediatric end-stage CAVS (pCAVS). Histological studies identified collagen fiber realignment and unique regions of high-density collagen in pCAVS. Proteomic analysis reported specific collagen peptides are modified by hydroxylated prolines (HYP), a post-translational modification critical to stabilizing the collagen triple helix. Quantitative data analysis reported significant regulation of collagen HYP sites across patient categories. Non-collagen type ECM proteins identified (26 of the 44 total proteins) have direct interactions in collagen synthesis, regulation, or modification. Network analysis identified BAMBI (BMP and Activin Membrane Bound Inhibitor) as a potential upstream regulator of the collagen interactome. This is the first study to detail the collagen types and HYP modifications associated with human AV development and pCAVS. We anticipate that this study will inform new therapeutic avenues that inhibit valvular degradation in pCAVS and engineered options for valve replacement.
Subject(s)
Aortic Valve Stenosis , Aortic Valve , Collagen/metabolism , Heart Defects, Congenital , Protein Processing, Post-Translational , Adolescent , Aortic Valve/growth & development , Aortic Valve/pathology , Aortic Valve Stenosis/congenital , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Child , Child, Preschool , Female , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Humans , Hydroxylation , Infant , Infant, Newborn , Male , ProteomicsABSTRACT
As more and more proteins specific to hair cells are discovered, it becomes imperative to understand their structure and how that contributes to their function. The fluorescence microscopic methods described here can be employed to provide information on protein-protein interactions, whether homomeric or heteromeric, and on protein conformation. Here, we describe two fluorescence microscopic methodologies applied to the outer hair cell-specific membrane protein prestin: the intensity and fluorescence lifetime (FLIM) variants of FRET (Fluorescence Resonance Energy Transfer), used in the study of protein-protein interactions, and the Scanning Cysteine Accessibility Method (SCAM), used for the determination of protein conformation. The methods are readily adaptable to other proteins.
Subject(s)
Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/physiology , Microscopy, Fluorescence/methods , Animals , Cell Line , Fluorescence Resonance Energy Transfer/methods , Hair Cells, Auditory, Outer/cytology , Hair Cells, Auditory, Outer/metabolism , Humans , Mice , Microscopy, Confocal/methods , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/genetics , Molecular Motor Proteins/physiology , Protein ConformationABSTRACT
Tubulin, the dimeric structural protein of microtubules, is a heterodimer of alpha and beta subunits; both alpha and beta exist as numerous isotypes encoded by different genes. In vertebrates the sequence differences among the beta(I), beta(II), beta(III), beta(IV) and beta(V) isotypes are highly conserved in evolution, implying that the isotypes may have functional significance. Isotype-specific monoclonal antibodies have been useful in determining the cellular and sub-cellular distributions and possible functions of the beta(I), beta(II), beta(III), and beta(IV) isotypes; however, little is known about the beta(V) isotype. We here report the creation and purification of a monoclonal antibody (SHM.12G11) specific for beta(V). The antibody was designed to be specific for the C-terminal sequence EEEINE, which is unique to rodent and chicken beta(V). The antibody was found to bind specifically to the C-terminal peptide EEEINE, and does not cross-react with the carboxy-termini of either alpha-tubulin or the other beta-tubulin isotypes. However, the antibody also binds to the peptide EEEVNE, but not to the peptide EEEIDG, corresponding respectively to the C-terminal peptides of bovine and human beta(V). Immunofluorescence analysis indicates that beta(V) is found in microtubules of both the interphase network and the mitotic spindle. In gerbils, beta(V) also occurs in the cochlea where it is found largely in the specialized cells that are unique in containing bundled microtubules with 15 protofilaments.
Subject(s)
Cochlea/metabolism , Organ of Corti/metabolism , Tubulin/metabolism , Animals , Antibodies, Monoclonal/immunology , Axoneme/immunology , Axoneme/metabolism , Cattle , Cell Line , Gerbillinae , Humans , Mice , Peptides/immunology , Peptides/metabolism , Protein Isoforms/immunology , Protein Isoforms/metabolism , Tubulin/immunologyABSTRACT
Type 1 diabetes (T1D) is a chronic autoimmune disease that results from destruction of pancreatic ß-cells. T1D subjects were recently shown to harbor distinct intestinal microbiome profiles. Based on these findings, the role of gut bacteria in T1D is being intensively investigated. The mechanism connecting intestinal microbial homeostasis with the development of T1D is unknown. Specific gut bacteria such as Bacteroides dorei (BD) and Ruminococcus gnavus (RG) show markedly increased abundance prior to the development of autoimmunity. One hypothesis is that these bacteria might traverse the damaged gut barrier, and their constituents elicit a response from human islets that causes metabolic abnormalities and inflammation. We have tested this hypothesis by exposing human islets to BD and RG in vitro, after which RNA-Seq analysis was performed. The bacteria altered expression of many islet genes. The commonly upregulated genes by these bacteria were cytokines, chemokines and enzymes, suggesting a significant effect of gut bacteria on islet antimicrobial and biosynthetic pathways. Additionally, each bacteria displayed a unique set of differentially expressed genes (DEGs). Ingenuity pathway analysis of DEGs revealed that top activated pathways and diseases included TREM1 signaling and inflammatory response, illustrating the ability of bacteria to induce islet inflammation. The increased levels of selected factors were confirmed using immunoblotting and ELISA methods. Our data demonstrate that islets produce a complex anti-bacterial response. The response includes both symbiotic and pathogenic aspects. Both oxidative damage and leukocyte recruitment factors were prominent, which could induce beta cell damage and subsequent autoimmunity.
Subject(s)
Bacteroides , Clostridiales , Diabetes Mellitus, Type 1/microbiology , Islets of Langerhans/immunology , Adult , Bacteroides/genetics , Clostridiales/genetics , Cytokines/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Gastrointestinal Microbiome , Gene Expression Regulation, Bacterial , Humans , Islets of Langerhans/microbiology , Middle Aged , RNA-Seq , Transcriptome , Young AdultABSTRACT
Dissecting development of neuronal connections is critical for understanding neuronal function in both normal and diseased states. Charting the development of the multitude of connections is a monumental task, since a given neuron typically receives hundreds of convergent inputs from other neurons and provides divergent outputs for hundreds of other neurons. Although progress is being made utilizing various mutants and/or genetic constructs expressing fluorescent proteins like GFP, substantial work remains before a database documenting the development and final location of the neuronal pathways in an adult animal is completed. The vast majority of developing neurons cannot be specifically labeled with antibodies and making specific GFP-expressing constructs to tag each of them is an overwhelming task. Fortunately, fluorescent lipophilic dyes have emerged as very useful tools to systematically compare changes in neuronal networks between wild-type and mutant mice. These dyes diffuse laterally along nerve cell membranes in fixed preparations, allowing tracing of the position of a given neuron within the neuronal network in murine mutants fixed at various stages of development. Until recently, however, most evaluations have been limited to one, or at most, two color analyses. We have previously reported three color neuronal profiling using the novel lipophilic dyes NeuroVue (NV) Green, Red and Maroon (Fritzsch et al., Brain. Res. Bull. 66: 249-258, 2005). Unfortunately such three color experiments have been limited by the fact that NV Green and its brighter successor, NV Emerald, both exhibit substantially decreased signal intensities when times greater than 48 hours at 37 degrees C are required to achieve neuronal profile filling (unpublished observations). Here we describe a standardized test system developed to allow comparison of candidate dyes and its use to evaluate a series of 488 nm-excited green-emitting lipophilic dyes. The best of these, NV Jade, has spectral properties well matched to NV Red and NV Maroon, better solubility in DMF than DiO or DiA, improved thermostability compared with NV Emerald, and the ability to fill neuronal profiles at rates of 1 mm per day for periods of at least 5 days. Use of NV Jade in combination with NV Red and NV Maroon substantially improves the efficiency of connectional analysis in complex mutants and transgenic models where limited numbers of specimens are available.
Subject(s)
Coloring Agents/chemistry , Neurons/ultrastructure , Tissue Fixation , Animals , Animals, Genetically Modified , Diagnostic Imaging , Diffusion , Histological Techniques , Spinal Cord/cytology , Spinal Cord/physiologyABSTRACT
The seven mammalian isotypes of beta tubulin are strikingly similar in amino acid sequence. The differences in isotypic sequence, although small, are nonetheless conserved in evolution, which suggests that they may confer distinct functional roles. If so, such roles should be reflected in the selective expression of isotypes by cell type, or even in the sorting of isotypes to within-cell pools. Hair cells of the vestibular sensory epithelia each possess a kinocilium, a microtubule-based organelle that could represent a distinct microtubule compartment, separate from the extensive microtubule network in the soma. The afferent neurons that innervate the vestibular sensory epithelia may also be functionally divided into dendritic, somatic, and axonal compartments, each with its own complement of microtubules. We have examined the distribution of beta tubulin isotypes in gerbil vestibular epithelia using isotype-specific antibodies to four isotypes and indirect immunofluorescence. We found that hair cells selectively express betaI and betaIV tubulin, while supporting cells express betaI, betaII, and betaIV tubulin. However, no sorting of isotypes between somatic and kinocilia compartments was found in hair cells. Vestibular ganglion cells display three isotypes in the soma, axon, and terminal dendrite compartments (betaI, betaII, and betaIII tubulin), but only betaIII tubulin was found in calyceal nerve endings. The implication of these findings is that beta tubulin isotypes are not sorted to within-cell compartments in hair cells but are sorted in some vestibular neurons.
Subject(s)
Hair Cells, Vestibular/metabolism , Tubulin/metabolism , Animals , Cell Compartmentation/physiology , Fluorescent Antibody Technique, Indirect , Ganglia, Sensory/cytology , Gerbillinae , Isomerism , Microtubules/metabolism , Tubulin/chemistryABSTRACT
Aminoglycosides (AG), including gentamicin (GM), are the most frequently used antibiotics in the world and are proposed to cause irreversible cochlear damage and hearing loss (HL) in 1/4 of the patients receiving these life-saving drugs. Akin to the results of AG ototoxicity studies, high-frequency, basal turn outer hair cells (OHCs) preferentially succumb to multiple HL pathologies while inner hair cells (IHCs) are much more resilient. To determine if endogenous differences in IHC and OHC mitochondrial metabolism dictate differential sensitivities to AG-induced HL, IHC- and OHC-specific changes in mitochondrial reduced nicotinamide adenine dinucleotide (NADH) fluorescence during acute (1 h) GM treatment were compared. GM-mediated decreases in NADH fluorescence and succinate dehydrogenase activity were observed shortly after GM application. High-frequency basal turn OHCs were found to be metabolically biased to rapidly respond to alterations in their microenvironment including GM and elevated glucose exposures. These metabolic biases may predispose high-frequency OHCs to preferentially produce cell-damaging reactive oxygen species during traumatic challenge. Noise-induced and age-related HL pathologies share key characteristics with AG ototoxicity, including preferential OHC loss and reactive oxygen species production. Data from this report highlight the need to address the role of mitochondrial metabolism in regulating AG ototoxicity and the need to illuminate how fundamental differences in IHC and OHC metabolism may dictate differences in HC fate during multiple HL pathologies.
Subject(s)
Anti-Bacterial Agents/adverse effects , Gentamicins/adverse effects , Hair Cells, Auditory, Outer/metabolism , Mitochondria/metabolism , NAD/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Gentamicins/pharmacology , Hair Cells, Auditory, Outer/pathology , Mice , Mitochondria/pathology , Organ Culture TechniquesABSTRACT
Our laboratory has developed a flow cytometric assay to quantify alveolar macrophage (Mcapital EF, Cyrillic) phagocytosis of bacteria within a live animal. Mcapital EF, Cyrillics collected by bronchoalveolar lavage from rats infected transtracheally with Syto 9-labeled bacteria are fluorescently labeled for identification and analyzed by flow cytometry to quantify their bacterial uptake.
Subject(s)
Bacteria/immunology , Flow Cytometry/methods , Macrophages, Alveolar/microbiology , Phagocytosis , Animals , Bronchoalveolar Lavage , Fluorescent Dyes/pharmacology , Lung/immunology , Male , Organic Chemicals/pharmacology , Rats , Rats, Sprague-Dawley , Staining and LabelingABSTRACT
Specialized outer hair cells (OHCs) housed within the mammalian cochlea exhibit active, nonlinear, mechanical responses to auditory stimulation termed electromotility. The extraordinary frequency resolution capacity of the cochlea requires an exquisitely equilibrated mechanical system of sensory and supporting cells. OHC electromotile length change, stiffness, and force generation are responsible for a 100-fold increase in hearing sensitivity by augmenting vibrational input to non-motile sensory inner hair cells. Characterization of OHC mechanics is crucial for understanding and ultimately preventing permanent functional deficits due to overstimulation or as a consequence of various cochlear pathologies. The OHCs' major structural assembly is a highly-specialized lateral wall. The lateral wall consists of three structures; a plasma membrane highly-enriched with the motor-protein prestin, an actin-spectrin cortical lattice, and one or more layers of subsurface cisternae. Technical difficulties in independently manipulating each lateral wall constituent have constrained previous attempts to analyze the determinants of OHCs' mechanical properties. Temporal separations in the accumulation of each lateral wall constituent during postnatal development permit associations between lateral wall structure and OHC mechanics. We compared developing and adult gerbil OHC axial stiffness using calibrated glass fibers. Alterations in each lateral wall component and OHC stiffness were correlated as a function of age. Reduced F-actin labeling was correlated with reduced OHC stiffness before hearing onset. Prestin incorporation into the PM was correlated with increased OHC stiffness at hearing onset. Our data indicate lateral wall F-actin and prestin are the primary determinants of OHC mechanical properties before and after hearing onset, respectively.
Subject(s)
Actins/metabolism , Aging/physiology , Hair Cells, Auditory, Outer/growth & development , Hearing/physiology , Mechanotransduction, Cellular/physiology , Nerve Tissue Proteins/metabolism , Animals , Gerbillinae , Hair Cells, Auditory, Outer/ultrastructureABSTRACT
Nielsen et al., [2001: Curr Biol 11:529-533], based on studies in Drosophila, have proposed that beta tubulin in axonemal microtubules must contain a specific acidic seven amino acid sequence in its carboxyl terminus. In mammals, the two betaIV isotypes (betaIVa and betaIVb) contain that sequence. In order to test the application of this hypothesis to mammals, we have examined the expression of beta tubulin isotypes in four different ciliated tissues (trachea, ependyma, uterine tube, and testis) using isotype-specific antibodies and indirect immunofluorescence. We find that betaIV tubulin is present in all ciliated cell types examined, but so is betaI tubulin. Taken together with recent studies that show that betaI and betaIV tubulin are both present in the cilia of vestibular hair cells, olfactory neurons, and nasal respiratory epithelial cells, we propose that both betaI tubulin and betaIV tubulin may be required for axonemal structures in mammals.
Subject(s)
Cilia/metabolism , Tubulin/metabolism , Animals , Female , Gerbillinae/metabolism , Male , Organ Specificity , Protein IsoformsABSTRACT
Compartmentalization of beta-tubulin isotypes within cells according to function was examined in gerbil olfactory and respiratory epithelia by using specific antibodies to four beta-tubulin isotypes (beta(I), beta(II), beta(III), and beta(IV)). Isotype synthesis was cell-type-specific, but the localization of the isotypes was not compartmentalized. All four isotypes were found in the cilia, dendrites, somata, and axons of olfactory neurons. Only two isotypes (beta(I) and beta(IV)) were present in the cilia of nasal respiratory epithelial cells. The beta(IV) isotype, thought to be an essential component of cilia, was present in olfactory neurons and respiratory epithelial cells, which are ciliated, but was not found in basal cells (the stem cells of olfactory sensory neurons, which have no cilia). Olfactory neurons therefore do not synthesize beta(IV)-tubulin until they mature, when functioning cilia are also elaborated. The failure to observe compartmentalization of beta-tubulin isotypes in olfactory neurons sheds new light on potential functions of the beta-tubulin isotypes.
Subject(s)
Nasal Mucosa/metabolism , Protein Isoforms/biosynthesis , Tubulin/biosynthesis , Animals , Gerbillinae , Nasal Mucosa/cytology , Protein Isoforms/immunology , Tubulin/immunologyABSTRACT
There are seven isotypic forms of the microtubule protein beta tubulin in mammals, but not all isotypes are synthesized in every cell type. In the adult organ of Corti, each of the five major cell types synthesizes a different subset of isotypes. Inner hair cells synthesize only betaI and betaII tubulin, while outer hair cells make betaI and betaIV tubulin. Only betaII and betaIV tubulin are found in inner and outer pillar cells, while betaI, betaII, and betaIV tubulin are present in Deiters cells, and betaI, betaII and betaIII tubulin are found in organ of Corti dendrites. During post-natal organ of Corti development in the gerbil, microtubules are elaborated in an orderly temporal sequence beginning with hair cells, followed by pillar cells and Deiters cells. Using beta tubulin isotype-specific antibodies, we show that, in the gerbil cochlea, the same three isotypes are present in each cell type at birth, and that a cell type-specific reduction in the isotypes synthesized occurs in hair cells and pillar cells at an unusually late stage in development. No beta tubulin isotypes were detected in mature afferent dendrites, but we show that this is because few microtubules are present in mature dendrites. In addition, we show that primary cilia in inner hair cells, a feature of early development, persist much later than previously reported. The findings represent the first description of developmental cell type-specific reductions in tubulin isotypes in any system.