Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Bioinformatics ; 39(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-37995286

ABSTRACT

MOTIVATION: Predicting protein structures with high accuracy is a critical challenge for the broad community of life sciences and industry. Despite progress made by deep neural networks like AlphaFold2, there is a need for further improvements in the quality of detailed structures, such as side-chains, along with protein backbone structures. RESULTS: Building upon the successes of AlphaFold2, the modifications we made include changing the losses of side-chain torsion angles and frame aligned point error, adding loss functions for side chain confidence and secondary structure prediction, and replacing template feature generation with a new alignment method based on conditional random fields. We also performed re-optimization by conformational space annealing using a molecular mechanics energy function which integrates the potential energies obtained from distogram and side-chain prediction. In the CASP15 blind test for single protein and domain modeling (109 domains), DeepFold ranked fourth among 132 groups with improvements in the details of the structure in terms of backbone, side-chain, and Molprobity. In terms of protein backbone accuracy, DeepFold achieved a median GDT-TS score of 88.64 compared with 85.88 of AlphaFold2. For TBM-easy/hard targets, DeepFold ranked at the top based on Z-scores for GDT-TS. This shows its practical value to the structural biology community, which demands highly accurate structures. In addition, a thorough analysis of 55 domains from 39 targets with publicly available structures indicates that DeepFold shows superior side-chain accuracy and Molprobity scores among the top-performing groups. AVAILABILITY AND IMPLEMENTATION: DeepFold tools are open-source software available at https://github.com/newtonjoo/deepfold.


Subject(s)
Proteins , Software , Protein Conformation , Proteins/chemistry , Protein Structure, Secondary , Protein Folding
2.
Sci Rep ; 14(1): 19362, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169169

ABSTRACT

Obstructive sleep apnea (OSA) is closely associated with the development and chronicity of temporomandibular disorder (TMD). Given the intricate pathophysiology of both OSA and TMD, comprehensive diagnostic approaches are crucial. This study aimed to develop an automatic prediction model utilizing multimodal data to diagnose OSA among TMD patients. We collected a range of multimodal data, including clinical characteristics, portable polysomnography, X-ray, and MRI data, from 55 TMD patients who reported sleep problems. This data was then analyzed using advanced machine learning techniques. Three-dimensional VGG16 and logistic regression models were used to identify significant predictors. Approximately 53% (29 out of 55) of TMD patients had OSA. Performance accuracy was evaluated using logistic regression, multilayer perceptron, and area under the curve (AUC) scores. OSA prediction accuracy in TMD patients was 80.00-91.43%. When MRI data were added to the algorithm, the AUC score increased to 1.00, indicating excellent capability. Only the obstructive apnea index was statistically significant in predicting OSA in TMD patients, with a threshold of 4.25 events/h. The learned features of the convolutional neural network were visualized as a heatmap using a gradient-weighted class activation mapping algorithm, revealing that it focuses on differential anatomical parameters depending on the absence or presence of OSA. In OSA-positive cases, the nasopharynx, oropharynx, uvula, larynx, epiglottis, and brain region were recognized, whereas in OSA-negative cases, the tongue, nose, nasal turbinate, and hyoid bone were recognized. Prediction accuracy and heat map analyses support the plausibility and usefulness of this artificial intelligence-based OSA diagnosis and prediction model in TMD patients, providing a deeper understanding of regions distinguishing between OSA and non-OSA.


Subject(s)
Machine Learning , Magnetic Resonance Imaging , Polysomnography , Sleep Apnea, Obstructive , Temporomandibular Joint Disorders , Humans , Sleep Apnea, Obstructive/diagnosis , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/complications , Temporomandibular Joint Disorders/diagnostic imaging , Temporomandibular Joint Disorders/diagnosis , Temporomandibular Joint Disorders/complications , Temporomandibular Joint Disorders/physiopathology , Male , Female , Adult , Middle Aged , Magnetic Resonance Imaging/methods , Polysomnography/methods
3.
Sci Rep ; 14(1): 18865, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39143180

ABSTRACT

This study investigated the usefulness of deep learning-based automatic detection of temporomandibular joint (TMJ) effusion using magnetic resonance imaging (MRI) in patients with temporomandibular disorder and whether the diagnostic accuracy of the model improved when patients' clinical information was provided in addition to MRI images. The sagittal MR images of 2948 TMJs were collected from 1017 women and 457 men (mean age 37.19 ± 18.64 years). The TMJ effusion diagnostic performances of three convolutional neural networks (scratch, fine-tuning, and freeze schemes) were compared with those of human experts based on areas under the curve (AUCs) and diagnosis accuracies. The fine-tuning model with proton density (PD) images showed acceptable prediction performance (AUC = 0.7895), and the from-scratch (0.6193) and freeze (0.6149) models showed lower performances (p < 0.05). The fine-tuning model had excellent specificity compared to the human experts (87.25% vs. 58.17%). However, the human experts were superior in sensitivity (80.00% vs. 57.43%) (all p < 0.001). In gradient-weighted class activation mapping (Grad-CAM) visualizations, the fine-tuning scheme focused more on effusion than on other structures of the TMJ, and the sparsity was higher than that of the from-scratch scheme (82.40% vs. 49.83%, p < 0.05). The Grad-CAM visualizations agreed with the model learned through important features in the TMJ area, particularly around the articular disc. Two fine-tuning models on PD and T2-weighted images showed that the diagnostic performance did not improve compared with using PD alone (p < 0.05). Diverse AUCs were observed across each group when the patients were divided according to age (0.7083-0.8375) and sex (male:0.7576, female:0.7083). The prediction accuracy of the ensemble model was higher than that of the human experts when all the data were used (74.21% vs. 67.71%, p < 0.05). A deep neural network (DNN) was developed to process multimodal data, including MRI and patient clinical data. Analysis of four age groups with the DNN model showed that the 41-60 age group had the best performance (AUC = 0.8258). The fine-tuning model and DNN were optimal for judging TMJ effusion and may be used to prevent true negative cases and aid in human diagnostic performance. Assistive automated diagnostic methods have the potential to increase clinicians' diagnostic accuracy.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Neural Networks, Computer , Temporomandibular Joint Disorders , Temporomandibular Joint , Humans , Female , Male , Adult , Magnetic Resonance Imaging/methods , Temporomandibular Joint Disorders/diagnostic imaging , Temporomandibular Joint Disorders/pathology , Middle Aged , Temporomandibular Joint/diagnostic imaging , Temporomandibular Joint/pathology , Young Adult , Aged , Adolescent , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL