ABSTRACT
Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.
Subject(s)
Astrocytes , Cognitive Dysfunction , Hippocampus , Lipocalin-2 , Long-Term Potentiation , Neuroinflammatory Diseases , Neurons , Animals , Astrocytes/metabolism , Astrocytes/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Lipocalin-2/metabolism , Lipocalin-2/genetics , Mice , Hippocampus/metabolism , Hippocampus/pathology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Neurons/metabolism , Neurons/pathology , Mice, Knockout , Male , Mice, Inbred C57BL , Receptors, N-Methyl-D-Aspartate/metabolism , Optogenetics , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/metabolism , Disease Models, AnimalABSTRACT
BACKGROUND: Although most elderly patients with acute myeloid leukemia (AML) are ineligible for intensive chemotherapy (ICT), treatment options remain limited. CURRENT (UMIN000037786), a real-world, non-interventional, retrospective chart review, evaluated clinical outcomes, clinicopathologic characteristics, and treatment patterns in these patients. We present results from a subanalysis of Korean patients in this study. METHODS: Patients were aged ≥ 18 years with primary or secondary AML ineligible for ICT who initiated first-line systemic therapy or best supportive care (BSC) between 2015 and 2018 across four centers in Korea. Primary endpoint was overall survival (OS) from diagnosis. Secondary endpoints included progression-free survival (PFS), time to treatment failure, and response rates. Data analyses were primarily descriptive, with time-to-event outcomes estimated using the Kaplan-Meier method, and Cox regression used to determine prognostic factors for survival. RESULTS: Among 194 patients enrolled, 84.0% received systemic therapy and 16.0% received BSC. Median age at diagnosis was 74 and 78 years, and Eastern Cooperative Oncology Group (ECOG) performance status 0 or 1 was reported in 73.0% and 48.4% of patients, respectively; poor cytogenetic risk was reported in 30.1% and 16.1% of patients. Median OS was 7.83 vs. 4.50 months, and median PFS was 6.73 vs. 4.50 months in the systemic therapy vs. BSC groups. Prognostic factors affecting OS included secondary AML (hazard ratio, 1.67 [95% confidence interval, 1.13-2.45]), ECOG performance status ≥ 2 (2.41 [1.51-3.83]), poor cytogenetic risk (2.10 [1.36-3.24]), and Charlson comorbidity index ≥ 1 (2.26 [1.43-3.58]). CONCLUSION: Clinical outcomes are poor in Korean patients with AML ineligible for ICT who are prescribed current systemic therapies or BSC. There is a substantial unmet need for novel agents (monotherapy or in combination) to improve clinical outcomes in this patient population.
Subject(s)
Leukemia, Myeloid, Acute , Aged , Humans , Retrospective Studies , Leukemia, Myeloid, Acute/drug therapy , Proportional Hazards Models , Progression-Free Survival , Republic of Korea , Treatment Outcome , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effectsABSTRACT
Although ATP and/or adenosine derived from astrocytes are known to regulate sleep, the precise mechanisms underlying the somnogenic effects of ATP and adenosine remain unclear. We selectively expressed channelrhodopsin-2 (ChR2), a light-sensitive ion channel, in astrocytes within the ventrolateral preoptic nucleus (VLPO), which is an essential brain nucleus involved in sleep promotion. We then examined the effects of photostimulation of astrocytic ChR2 on neuronal excitability using whole-cell patch-clamp recordings in two functionally distinct types of VLPO neurons: sleep-promoting GABAergic projection neurons and non-sleep-promoting local GABAergic neurons. Optogenetic stimulation of VLPO astrocytes demonstrated opposite outcomes in the two types of VLPO neurons. It led to the inhibition of non-sleep-promoting neurons and excitation of sleep-promoting neurons. These responses were attenuated by blocking of either adenosine A1 receptors or tissue-nonspecific alkaline phosphatase (TNAP). In contrast, exogenous adenosine decreased the excitability of both VLPO neuron populations. Moreover, TNAP was expressed in galanin-negative VLPO neurons, but not in galanin-positive sleep-promoting projection neurons. Taken together, these results suggest that astrocyte-derived ATP is converted into adenosine by TNAP in non-sleep-promoting neurons. In turn, adenosine decreases the excitability of local GABAergic neurons, thereby increasing the excitability of sleep-promoting GABAergic projection neurons. We propose a novel mechanism involving astrocyte-neuron interactions in sleep regulation, wherein endogenous adenosine derived from astrocytes excites sleep-promoting VLPO neurons, and thus decreases neuronal excitability in arousal-related areas of the brain.
Subject(s)
Galanin , Preoptic Area , Adenosine/pharmacology , Adenosine Triphosphate/pharmacology , Astrocytes , GABAergic Neurons , Galanin/pharmacology , Preoptic Area/physiologyABSTRACT
The manufacturing process for an ultrawide flexible microwave absorbing meta-surface was developed and optimized experimentally. The developed replication process consists of four main steps to demonstrate double-square loop array meta-structures: (1) mechanical machining of a master mold, (2) soft mold replication and patterned film imprinting, (3) conductive ink blade filling, (4) lamination of a base flexible film to meta sheet. Based on experimental optimization of the individual steps, the manufacturing process for a large-area flexible meta-film was established successfully. The feasibility of a developed process has been demonstrated with a 200 mm × 500 mm fabricated meta-film with a focus on microwave absorbing uniformity in the X-band region.
ABSTRACT
Although ventrolateral preoptic (VLPO) nucleus is regarded as a center for sleep promotion, the exact mechanisms underlying the sleep regulation are unknown. Here, we used optogenetic tools to identify the key roles of VLPO astrocytes in sleep promotion. Optogenetic stimulation of VLPO astrocytes increased sleep duration in the active phase in naturally sleep-waking adult male rats (n = 6); it also increased the extracellular ATP concentration (n = 3) and c-Fos expression (n = 3-4) in neurons within the VLPO. In vivo microdialysis analyses revealed an increase in the activity of VLPO astrocytes and ATP levels during sleep states (n = 4). Moreover, metabolic inhibition of VLPO astrocytes reduced ATP levels (n = 4) and diminished sleep duration (n = 4). We further show that tissue-nonspecific alkaline phosphatase (TNAP), an ATP-degrading enzyme, plays a key role in mediating the somnogenic effects of ATP released from astrocytes (n = 5). An appropriate sample size for all experiments was based on statistical power calculations. Our results, taken together, indicate that astrocyte-derived ATP may be hydrolyzed into adenosine by TNAP, which may in turn act on VLPO neurons to promote sleep.SIGNIFICANCE STATEMENT Glia have recently been at the forefront of neuroscience research. Emerging evidence illustrates that astrocytes, the most abundant glial cell type, are the functional determinants for fates of neurons and other glial cells in the central nervous system. In this study, we newly identified the pivotal role of hypothalamic ventrolateral preoptic (VLPO) astrocytes in the sleep regulation, and provide novel insights into the mechanisms underlying the astrocyte-mediated sleep regulation.
Subject(s)
Astrocytes/physiology , Preoptic Area/physiology , Sleep/physiology , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Alkaline Phosphatase/biosynthesis , Alkaline Phosphatase/genetics , Animals , Cytokines/metabolism , Male , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Neurotransmitter Agents/metabolism , Optogenetics , Patch-Clamp Techniques , Photic Stimulation , Preoptic Area/cytology , Proto-Oncogene Proteins c-fos/biosynthesis , Proto-Oncogene Proteins c-fos/genetics , Rats , Rats, Sprague-DawleyABSTRACT
Lipocalin-2 (LCN2) has diverse functions in multiple pathophysiological conditions; however, its pathogenic role in vascular dementia (VaD) is unknown. Here, we investigated the role of LCN2 in VaD using rodent models of global cerebral ischemia and hypoperfusion with cognitive impairment and neuroinflammation. Mice subjected to transient bilateral common carotid artery occlusion (tBCCAo) for 50 min showed neuronal death and gliosis in the hippocampus at 7 days post-tBCCAo. LCN2 expression was observed predominantly in the hippocampal astrocytes, whereas its receptor was mainly detected in neurons, microglia, and astrocytes. Furthermore, Lcn2-deficient mice, compared with wild-type animals, showed significantly weaker CA1 neuronal loss, cognitive decline, white matter damage, blood-brain barrier permeability, glial activation, and proinflammatory cytokine production in the hippocampus after tBCCAo. Lcn2 deficiency also attenuated hippocampal neuronal death and cognitive decline at 30 days after unilateral common carotid artery occlusion (UCCAo). Furthermore, intracerebroventricular (i.c.v) injection of recombinant LCN2 protein elicited CA1-neuronal death and a cognitive deficit. Our studies using cultured glia and hippocampal neurons supported the decisive role of LCN2 in hippocampal neurotoxicity and microglial activation, and the role of the HIF-1α-LCN2-VEGFA axis of astrocytes in vascular injury. Additionally, plasma levels of LCN2 were significantly higher in patients with VaD than in the healthy control subjects. These results indicate that hippocampal damage and cognitive impairment are mediated by LCN2 secreted from reactive astrocytes in VaD.
Subject(s)
Astrocytes/metabolism , Cognitive Dysfunction/metabolism , Dementia, Vascular/metabolism , Hippocampus/metabolism , Lipocalin-2/metabolism , Animals , Astrocytes/pathology , Biomarkers/blood , Cells, Cultured , Cognition/physiology , Cognitive Dysfunction/pathology , Dementia, Vascular/pathology , Disease Models, Animal , Hippocampus/blood supply , Hippocampus/pathology , Humans , Lipocalin-2/administration & dosage , Lipocalin-2/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Microvessels/metabolism , Microvessels/pathology , Recombinant Proteins/administration & dosage , Recombinant Proteins/metabolism , Vascular Endothelial Growth Factor A/metabolismABSTRACT
OBJECTIVES: The aim of this study was to predict the potential impact of the introduction of implantation of polyurethane scaffold for the treatment of partial meniscal lesions in the South Korean healthcare system. METHODS: The horizon scanning process was used to select a target technology and assess its potential impacts on patients and the Korean healthcare system. We identified and filtered research-phase health technologies that are not listed yet in Korean, but appear promising. After a process of prioritization, we chose the implantation of polyurethane scaffolds as a target technology. Then, through the procedures of assessment and peer review, we analyzed current evidence and its predicted potential impacts. RESULTS: There were eight studies included in the review: one prospective cohort and seven case-series studies. Six revealed significant improvements in function and pain relief. Of the six studies, which reported safety endpoints, four stated no major postoperative complications related to scaffold, and two reported adverse events and serious adverse events such as pain, joint swelling, et cetera. We also included the potential impact of this technology based on the experts' consultation. They all agreed that it would satisfy the diverse needs of patients and fulfill clinical needs. However, the majority of related clinical studies were based on short-term follow-up observations without any validation process involving comparison with control groups. CONCLUSIONS: Through a horizon scanning activity, we found that the implantation of polyurethane scaffolds is a promising technology to resolve articular cartilage defects; however, long-term evidence with comparison groups for safety and effectiveness is required.
Subject(s)
Knee Injuries/surgery , Prostheses and Implants , Technology Assessment, Biomedical/methods , Tibial Meniscus Injuries/surgery , Humans , Polyurethanes , Republic of KoreaABSTRACT
We attempted to investigate molecular mechanisms underlying phenotypic change of vascular smooth muscle cells (VSMCs) by determining signaling molecules involved in chemokine production. Treatment of human aortic smooth muscle cells (HAoSMCs) with thrombin resulted not only in elevated transcription of the (C-C motif) ligand 11 (CCL11) gene but also in enhanced secretion of CCL11 protein. Co-treatment of HAoSMCs with GF109230X, an inhibitor of protein kinase C, or GW5074, an inhibitor of Raf-1 kinase, caused inhibition of ERK1/2 phosphorylation and significantly attenuated expression of CCL11 at transcriptional and protein levels induced by thrombin. Both Akt phosphorylation and CCL11 expression induced by thrombin were attenuated in the presence of pertussis toxin (PTX), an inhibitor of Gi protein-coupled receptor, or LY294002, a PI3K inhibitor. In addition, thrombin-induced production of CCL11 was significantly attenuated by pharmacological inhibition of Akt or MEK which phosphorylates ERK1/2. These results indicate that thrombin is likely to promote expression of CCL11 via PKC/Raf-1/ERK1/2 and PTX-sensitive protease-activated receptors/PI3K/Akt pathways in HAoSMCs. We propose that multiple signaling pathways are involved in change of VSMCs to a secretory phenotype.
ABSTRACT
Garlic (Allium sativum) is a key ingredient in Korean cuisine, particularly in the preparation of kimchi, contributing to its flavor and taste. Garlic has been a potential resource for lactic acid bacteria (LAB) in kimchi. However, the mechanism by which it influences microbial diversity and metabolite production is unclear. This study investigated the effect of garlic on the bacterial composition of and metabolite changes in kimchi. To achieve this, four separate batches of kimchi were prepared with varying garlic concentrations (w/w): 0 %, 1 %, 2 %, and 4 %, and the bacterial communities and metabolite production were monitored. In the early stages of fermentation, the count of LAB, operational taxonomic units (OTUs), and Shannon index increased linearly with the increase in garlic content. This indicated that garlic is a rich resource and contributes to the diversity of LAB during kimchi fermentation. Compared with the kimchi samples with a lower garlic content, those with a high garlic content (≥2 %) exhibited increased abundance of Lactobacillus and Leuconostoc as well as noticeable differences in functional diversity, including carbohydrate, amino acid, and energy metabolisms. Correlation analysis between sugars, organic acids, and predominant LAB in the garlic-containing kimchi samples suggested that in kimchi samples with high garlic content, LAB played a significant role in the fermentation process by metabolizing sugars and producing organic acids. Overall, this study demonstrated that the addition of garlic has a positive impact on the bacterial diversity and metabolite production during kimchi fermentation, potentially affecting the fermentation process and flavor profile of kimchi.
ABSTRACT
The development of digital technology has made our lives more advanced as a society familiar with the Internet of Things (IoT). Solar cells are among the most promising candidates for power supply in IoT sensors. Perovskite photovoltaics (PPVs), which have already attained 25% and 40% power conversion efficiencies for outdoor and indoor light, respectively, are the best candidates for self-powered IoT system integration. In this review, we discuss recent research progress on PPVs under indoor light conditions, with a focus on device engineering to achieve high-performance indoor PPVs (Id-PPVs), including bandgap optimization and defect management. Finally, we discuss the challenges of Id-PPVs development and its interpretation as a potential research direction in the field.
ABSTRACT
Kimchi is a traditional Korean salted spontaneous lactic acid bacteria (LAB)-fermented food made using various vegetables. Organic acids, free sugars, and amino acids are key metabolites produced during LAB fermentation that determine the taste and quality of kimchi. However, each metabolite is typically analyzed using an independent analytical method, which is time-consuming and expensive. Therefore, in this study, we developed a method based on LC-Q-Orbitrap MS using which 20 types of representative fermented kimchi metabolites were selected and simultaneously analyzed within 10 min. The established method was validated, and its detection and quantification limits, linearity, precision, and accuracy were found to satisfy the Association of Official Agricultural Chemists (AOAC) validation guidelines. The 20 metabolites were simultaneously extracted from kimchi with different degrees of fermentation and quantitatively analyzed using LC-Q-Orbitrap MS. These results were analyzed using linear discriminant analysis and heat mapping, and the metabolites were grouped into early, middle, and late stages of fermentation. Malic acid (6.518-7.701 mMol) was only present in the initial stage of fermentation, and l-phenylalanine rapidly increased from the middle stage (2.180 mMol) to late stage (4.770 mMol). Lactic acid, which is representative of the sour taste of kimchi, was detected in the middle stage and increased rapidly up to 74.452 mMol in the late stage. In summary, in this study, 20 major kimchi metabolites were accurately analyzed within 10 min and grouped based on the degree of fermentation. Therefore, the method established in this study accurately and rapidly provides information on kimchi consumption and fermentation that could be highly valuable to the kimchi industry and kimchi consumers.
ABSTRACT
BACKGROUND: Ergothioneine (EGT) is a natural amino acid derivative in various animal organs and is a bioactive compound recognized as a food and medicine. OBJECTIVES: This study examined the effects of EGT supplementation during the in vitro maturation (IVM) period on porcine oocyte maturation and subsequent embryonic development competence after in vitro fertilization (IVF). METHODS: Each EGT concentration (0, 10, 50, and 100 µM) was supplemented in the maturation medium during IVM. After IVM, nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels of oocytes were investigated. In addition, the genes related to cumulus function and antioxidant pathways in oocytes or cumulus cells were investigated. Finally, this study examined whether EGT could affect embryonic development after IVF. RESULTS: After IVM, the EGT supplementation group showed significantly higher intracellular GSH levels and significantly lower intracellular ROS levels than the control group. Moreover, the expression levels of hyaluronan synthase 2 and Connexin 43 were significantly higher in the 10 µM EGT group than in the control group. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and NAD(P)H quinone dehydrogenase 1 (NQO1) were significantly higher in the oocytes of the 10 µM EGT group than in the control group. In the assessment of subsequent embryonic development after IVF, the 10 µM EGT treatment group improved the cleavage and blastocyst rate significantly than the control group. CONCLUSIONS: Supplementation of EGT improved oocyte maturation and embryonic development by reducing oxidative stress in IVM oocytes.
Subject(s)
Antioxidants , Ergothioneine , Pregnancy , Female , Swine , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Ergothioneine/pharmacology , Ergothioneine/analysis , Ergothioneine/metabolism , In Vitro Oocyte Maturation Techniques/veterinary , Reactive Oxygen Species/metabolism , Oocytes , Embryonic Development , Glutathione/analysis , Glutathione/metabolism , Glutathione/pharmacology , Fertilization in Vitro/veterinary , Blastocyst/metabolismABSTRACT
Ochratoxin A (OTA) is a stable toxin produced by fungal strains of Aspergillus and Penicillium. It is commonly found in a variety of food products, including dried fruit, coffee, and spices, raising concerns about their safety. This study was aimed to quantify OTA levels in different food products using HPLC with fluorescence detection. The pre-treatment process was optimised by employing immunoaffinity columns with Tween 20 to effectively remove interfering substances. An analytical method was developed, validated, and applied for OTA analysis in dried fruit, spices, and coffee samples. The validation procedure included determining detection and quantification limits, linearity, precision, and accuracy, as per the criteria specified by AOAC International. The validated method was successfully applied for OTA analysis in the selected food samples. Furthermore, health risk assessment was conducted based on the average intake and body weight of the Korean population. From the results, concentrations of OTA in the samples were found to be very low and therefore concluded not to pose significant threats to consumer health.
Subject(s)
Fruit , Spices , Coffee , Risk AssessmentABSTRACT
In view of their rich mineral content and flavor, kimchi cabbage leaves and roots have high nutritional and medicinal values. In this study, we quantified major nutrient (Ca, Cu, Fe, K, Mg, Na, and Zn), trace (B, Be, Bi, Co, Ga, Li, Ni, Se, Sr, V, and Cr), and toxic (Pb, Cd, Tl, and In) elements in kimchi cabbage cultivation soil, leaves, and roots. The analysis method relied on inductively coupled plasma-optical emission spectrometry for major nutrient elements and inductively coupled plasma-mass spectrometry for trace and toxic elements and complied with the Association of Official Analytical Chemists (AOAC) guidelines. Kimchi cabbage leaves and roots featured high contents of K, B, and Be, while the contents of all toxic elements in all samples were below the WHO-stipulated threshold values and therefore did not pose any health risks. The distribution of elements was characterized by heat map analysis and linear discriminant analysis to reveal independent separation according to the content of each element. The analysis confirmed that there was a difference in content between the groups and that each group was independently distributed. This study may contribute to a better understanding of the complex relationships between plant physiology, cultivation condition, and human health.
ABSTRACT
There has been significant research focused on the development of stretchable materials that can provide a large area with minimal material usage for use in solar cells and displays. However, most materials exhibit perpendicular shrinkage when stretched, which is particularly problematic for polymer-based substrates commonly used in stretchable devices. To address this issue, biaxial strain-controlled substrates have been proposed as a solution to increase device efficiency and conserve material resources. In this study, we present the design and fabrication of a biaxial strain-controlled substrate with a re-entrant honeycomb structure and a negative Poisson's ratio. Using a precisely machined mold with a shape error of less than 0.15%, we successfully fabricated polydimethylsiloxane substrates with a 500 µm thick re-entrant honeycomb structure, resulting in a 19.1% reduction in perpendicular shrinkage. This improvement translates to a potential increase in device efficiency by 9.44% and an 8.60% reduction in material usage for substrate fabrication. We demonstrate that this design and manufacturing method can be applied to the fabrication of efficient stretchable devices, such as solar cells and displays.
ABSTRACT
In ultra-precision planing process, the analysis of the critical depth of cut (DOC) is required to reduce the edge blunt and micro burrs produced by size effect which decreases of the effective area for high luminance retroreflector. However, since the machining characteristics are different according to cutting tool shape, machining material, and cutting condition, determine of the critical DOC is difficult without a comparison of machined surfaces under various DOC measured by ultra-high resolution measuring instrument. In this study, the critical DOC was analyzed using cutting force and tool vibration signals. The specific cutting energy was calculated by cutting force and cross-sectional area to analyze the stress variation according to DOC. Also, acceleration signals were converted to frequency spectrum that analyze dominant vibrating direction of the cutting tool by variation of cutting characteristic. It was confirmed that the method of using tool vibration more effective and accurate than specific cutting energy through validation of the comparison between results from analyze of the vibration signals and direction measuring surfaces. The master mold with area of 250 mm2 was manufactured by applying analyzed critical DOC. In addition, the high luminance characteristic of a retroreflection film press formed by the master mold was confirmed.
ABSTRACT
Recent studies utilizing deep convolutional neural networks (CNN) have described the central venous catheter (CVC) on chest radiography images. However, there have been no studies for the classification of the CVC tip position with a definite criterion on the chest radiograph. This study aimed to develop an algorithm for the automatic classification of proper depth with the application of automatic segmentation of the trachea and the CVC on chest radiographs using a deep CNN. This was a retrospective study that used plain chest supine anteroposterior radiographs. The trachea and CVC were segmented on images and three labels (shallow, proper, and deep position) were assigned based on the vertical distance between the tracheal carina and CVC tip. We used a two-stage approach model for the automatic segmentation of the trachea and CVC with U-net++ and automatic classification of CVC placement with EfficientNet B4. The primary outcome was a successful three-label classification through five-fold validations with segmented images and a test with segmentation-free images. Of a total of 808 images, 207 images were manually segmented and the overall accuracy of the five-fold validation for the classification of three-class labels (mean (SD)) of five-fold validation was 0.76 (0.03). In the test for classification with 601 segmentation-free images, the average accuracy, precision, recall, and F1-score were 0.82, 0.73, 0.73, and 0.73, respectively. We achieved the highest accuracy value of 0.91 in the shallow position label, while the highest F1-score was 0.82 in the deep position label. A deep CNN can achieve a comparative performance in the classification of the CVC position based on the distance from the carina to the CVC tip as well as automatic segmentation of the trachea and CVC on plain chest radiographs.
ABSTRACT
This study was designed to analyze the volatile organic compounds in the leaves of Ambrosia artemisiifolia L. and Artemisia annua L. from Korea. For extraction of volatile compounds, headspace-solid phase micro extraction (HS-SPME) and simultaneous distillation extraction (SDE) were applied and analyzed by gas chromatography/mass spectrometry (GC/MS). From the results, SDE extraction was found to give the highest concentration of volatile compounds with an average concentration of 1,237.79 mg/kg for A. annua L. leaves compared to 1,122.73 mg/kg by HS-SPME technique. A total of 116 volatile organic compounds were identified, including 76 similar volatile organic compounds detected by both the methods of extraction in leaves of subject species at varying concentrations. Among these 33 volatile organic compounds were reported for the first time from the subject plant species. Thus the present research findings extend the characterization of volatile organic compounds from leaves of A. annua L. and A. artemisiifolia L. species and reported some distinguishing compounds which may be used for their discrimination.
ABSTRACT
Microwave absorbers using conductive ink are generally fabricated by printing an array pattern on a substrate to generate electromagnetic fields. However, screen printing processes are difficult to vary the sheet resistance values for different regions of the pattern on the same layer, because the printing process deposits materials at the same height over the entire surface of substrate. In this study, a promising manufacturing process was suggested for engraved resistive double square loop arrays with ultra-wide bandwidth microwave. The developed manufacturing process consists of a micro-end-milling, inking, and planing processes. A 144-number of double square loop array was precisely machined on a polymethyl methacrylate workpiece with the micro-end-milling process. After engraving array structures, the machined surface was completely covered with the developed conductive carbon ink with a sheet resistance of 15 Ω/sq. It was cured at room temperature. Excluding the ink that filled the machined double square loop array, overflowed ink was removed with the planing process to achieve full filled and isolated resistive array patterns. The fabricated microwave absorber showed a small radar cross-section with reflectance less than - 10 dB in the frequency band range of 8.0-14.6 GHz.
ABSTRACT
The demand of consumers from around the world for natural, nutritional and palatable pork meat is increasing with time. This study analyzed macro (Ca, K, Mg, Na, P), micro (Fe, Zn, Cr, Mn, Ni, Cu, Se, Sr, Cs), trace (Li, Be, V, Co, Ga, Ba, U), and toxic trace (As, Cd, TI, and Pb) elements of pork meat from conventional and animal welfare farms in South Korea. Among the elements analyzed by inductively coupled plasma-optical emission, and mass spectrometric (ICP-OES, ICP-MS) techniques, K, Fe, Mn, and Ni content were higher in animal welfare pork meat. The trace and toxic trace elements content were lower than the standard values. The principal component and linear discriminant analyses (PCA, LDA) explained the highest variance (99.82%, 99.00%) of the group based on toxic elements. These findings can thus be used to evaluate animal welfare and conventional farms pork meat quality in South Korea as well as worldwide.