Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Environ Sci Health B ; 58(7): 521-529, 2023.
Article in English | MEDLINE | ID: mdl-37458264

ABSTRACT

Pollution of aquatic ecosystems is one of the major challenges affecting many countries of the world. Heavy metal pollutants, in particular, threaten the life of aquatic organisms (fauna and flora) and, more importantly, humans who consume aquatic products as a critical source of proteins. In the present study, the concentrations of selected heavy metals (cobalt- Co, Chromium-Cr, nickel- Ni and manganese- Mn) in Limnothrissa miodon, locally known as 'Kapenta' were assessed using the Microwave Plasma Atomic Emission Spectrometer (MP AES) 4200 at the Zambia Agricultural Research Institute (ZARI). The fish was collected from Lake Kariba, Zambia, which is divided into four fisheries management strata (I, II, III, and IV). The health risks to consumers were evaluated using the Estimated Daily Intake (EDI), Target Hazard Quotient (THQ) and Hazard Index (HI). Analysis of variance (ANOVA) was used to assess the difference in the means of heavy metal concentration across the four strata for each element. The concentrations of all the heavy metal elements were within the permissible limits considered to be safe for human consumption based on the Food and Agriculture Organization (FAO) standards. However, the concentration of individual heavy metal elements varied significantly across the strata with stratum I and II showing higher levels in general except for Mn which was highest in stratum II and III compared with the other strata. Furthermore, Mn concentration was the highest in all the strata and the highest concentration was observed in the fish from stratum II. The EDIs, THQs and HIs of each heavy metal element did not show any threat to consumers of the fish from the lake. Further studies are required to better understand the potential sources of heavy metals and to regularly monitor existing activities that may elevate the concentration levels.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Animals , Humans , Lakes/analysis , Zambia , Ecosystem , Metals, Heavy/analysis , Nickel , Fishes/metabolism , Food Contamination/analysis , Water Pollutants, Chemical/analysis , Risk Assessment , Environmental Monitoring
2.
Ecol Evol ; 11(23): 17447-17457, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938520

ABSTRACT

Investigating the determinants of the reproductive biology of fishes is an essential component of fisheries research. Tilapia breeding patterns were investigated to determine the impact of non-native Oreochromis niloticus on the native congeneric Oreochromis macrochir in the upper Kabompo River in the Northwest of Zambia using the gonadosomatic index and the sex ratios. Oreochromis niloticus was the most abundant fish caught (221, 63.5%) than O. macrochir (127, 36.5%). Results showed that the overall gonadosomatic index means of O. macrochir in both sections were similar. Oreochromis macrochir bred in December and February-March, with no reproduction in June. However, O. niloticus in the invaded section indicated all year reproduction through reduced spawning in May-June, with increased spawning activity in February-March. The sex ratio (females: males) was 1:1.3 and 1:1.7 for O. niloticus and O. macrochir, respectively, and both significantly deviated from the sex ratio of 1:1 (ꭓ2 = 8.42 and 9.37, p < .05). Our study has revealed that O. niloticus was able to spawn across all sampled months with a 23% higher breeding population than O. macrochir, which might explain the suppression in the abundance of native O. macrochir. Due to the superior breeding patterns of O. niloticus, fisheries, wildlife, and aquaculture practitioners need to make contingency plans to alleviate its impacts further downstream of the Kabompo River.

3.
Ecol Evol ; 11(18): 12845-12857, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34594543

ABSTRACT

Invasive alien species have been revealed to drastically alter the structure of native communities; however, there is scarce information on whether taxonomic and functional spaces occupied by native species are equally filled by exotic species. We investigated the diversity of native species to understand the impact of exotic Oreochromis niloticus in the upper Kabompo River, northwest of Zambia using taxonomic and functional diversity indices. To achieve this, two tests were performed (Test 1, compared natives in invaded and uninvaded sections; Test 2, compared natives in invaded section). A total of 17 species were collected for functional diversity computation, out of which fourteen (14) functional trait measurements linked to feeding, locomotion, and life history strategy were taken. Findings revealed that taxonomic and functional diversity values changed with invasion in both tests. Taxonomic diversity was 15% more in invaded than uninvaded sections in Test 1 and was not consistent across sampling points of invaded section in Test 2. Invaded areas were taxonomically less diverse, but functionally diverse in both tests. The analysis of similarity and nonmetric multidimensional scaling revealed no difference in Bray-Curtis similarity assemblages in both tests. Our findings revealed that exotic species more often occupy unfilled gaps in the communities often occupied by the native species; this is achieved by occupying functional spaces. Overall, changes in taxonomic and functional diversity of native species documented here partially confirmed impacts of O. niloticus invasion. Therefore, we recommend a multifaceted approach to assess cumulative impacts of invasion on native species.

SELECTION OF CITATIONS
SEARCH DETAIL