Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
Add more filters

Publication year range
1.
Mol Cancer ; 23(1): 18, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38243280

ABSTRACT

The production and release of tumor-derived small extracellular vesicles (TDSEVs) from cancerous cells play a pivotal role in the propagation of cancer, through genetic and biological communication with healthy cells. TDSEVs are known to orchestrate the invasion-metastasis cascade via diverse pathways. Regulation of early metastasis processes, pre-metastatic niche formation, immune system regulation, angiogenesis initiation, extracellular matrix (ECM) remodeling, immune modulation, and epithelial-mesenchymal transition (EMT) are among the pathways regulated by TDSEVs. MicroRNAs (miRs) carried within TDSEVs play a pivotal role as a double-edged sword and can either promote metastasis or inhibit cancer progression. TDSEVs can serve as excellent markers for early detection of tumors, and tumor metastases. From a therapeutic point of view, the risk of cancer metastasis may be reduced by limiting the production of TDSEVs from tumor cells. On the other hand, TDSEVs represent a promising approach for in vivo delivery of therapeutic cargo to tumor cells. The present review article discusses the recent developments and the current views of TDSEVs in the field of cancer research and clinical applications.


Subject(s)
Extracellular Vesicles , MicroRNAs , Neoplasms , Humans , Clinical Relevance , Neoplasms/pathology , MicroRNAs/genetics , Cell Communication , Epithelial-Mesenchymal Transition , Tumor Microenvironment , Neoplasm Metastasis/pathology
2.
J Pharmacol Exp Ther ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955492

ABSTRACT

Oxidative stress, fibrosis, and inflammasome activation from AGE-RAGE interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of ß-caryophyllene (BCP) on activating CB2 receptors against diabetes complications and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dosage of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance, insulin resistance, and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and SERCA2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NOX4 and activating PI3K/AKT/Nrf2 signaling. BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition (EndMT) in DCM mice by inhibiting TGF-ß/Smad signaling. Further, BCP treatment suppressed NLRP3 inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate CB2 receptor dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2 receptor antagonist AM630 and AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP showed the potential to protect the myocardium and pancreas of DCM mice mediating CB2 receptor dependent mechanisms. Significance Statement 1. ß-caryophyllene (BCP), a cannabinoid type 2 receptor (CB2R) agonist. 2. BCP attenuates diabetic cardiomyopathy via activating CB2R in mice 3. CB2R activation by BCP shows strong protection against fibrosis and inflammasome activation 4. It regulates AGE/RAGE and PI3K/Nrf2/Akt signaling in mice.

3.
Microb Pathog ; 192: 106687, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750773

ABSTRACT

Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Mastitis, Bovine , Plants, Medicinal , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/drug therapy , Mastitis, Bovine/prevention & control , Plants, Medicinal/chemistry , Anti-Inflammatory Agents/pharmacology , Female , Anti-Bacterial Agents/pharmacology , Humans , Milk , Diet/veterinary , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
4.
Semin Cancer Biol ; 86(Pt 2): 101-116, 2022 11.
Article in English | MEDLINE | ID: mdl-36084815

ABSTRACT

Brain cancer is an aggressive type of cancer with poor prognosis. While the immune system protects against cancer in the early stages, the tumor exploits the healing arm of inflammatory reactions to accelerate its growth and spread. Various immune cells penetrate the developing tumor region, establishing a pro-inflammatory tumor milieu. Additionally, tumor cells may release chemokines and cytokines to attract immune cells and promote cancer growth. Inflammation and its associated mechanisms in the progression of cancer have been extensively studied in the majority of solid tumors, especially brain tumors. However, treatment of the malignant brain cancer is hindered by several obstacles, such as the blood-brain barrier, transportation inside the brain interstitium, inflammatory mediators that promote tumor growth and invasiveness, complications in administering therapies to tumor cells specifically, the highly invasive nature of gliomas, and the resistance to drugs. To resolve these obstacles, nanomedicine could be a potential strategy that has facilitated advancements in diagnosing and treating brain cancer. Due to the numerous benefits provided by their small size and other features, nanoparticles have been a prominent focus of research in the drug-delivery field. The purpose of this article is to discuss the role of inflammatory mediators and signaling pathways in brain cancer as well as the recent advances in understanding the nano-carrier approaches for enhancing drug delivery to the brain in the treatment of brain cancer.


Subject(s)
Brain Neoplasms , Nanomedicine , Humans , Brain Neoplasms/metabolism , Drug Delivery Systems , Inflammation/drug therapy , Inflammation Mediators/therapeutic use
5.
Semin Cancer Biol ; 86(Pt 2): 1086-1104, 2022 11.
Article in English | MEDLINE | ID: mdl-35218902

ABSTRACT

Recent mounting evidence has revealed extensive genetic heterogeneity within tumors that drive phenotypic variation affecting key cancer pathways, making cancer treatment extremely challenging. Diverse cancer types display resistance to treatment and show patterns of relapse following therapy. Therefore, efforts are required to address tumor heterogeneity by developing a broad-spectrum therapeutic approach that combines targeted therapies. Inflammation has been progressively documented as a vital factor in tumor advancement and has consequences in epigenetic variations that support tumor instigation, encouraging all the tumorigenesis phases. Increased DNA damage, disrupted DNA repair mechanisms, cellular proliferation, apoptosis, angiogenesis, and its incursion are a few pro-cancerous outcomes of chronic inflammation. A clear understanding of the cellular and molecular signaling mechanisms of tumor-endorsing inflammation is necessary for further expansion of anti-cancer therapeutics targeting the crosstalk between tumor development and inflammatory processes. Multiple inflammatory signaling pathways, such as the NF-κB signaling pathway, JAK-STAT signaling pathway, MAPK signaling, PI3K/AKT/mTOR signaling, Wnt signaling cascade, and TGF-ß/Smad signaling, have been found to regulate inflammation, which can be modulated using various factors such as small molecule inhibitors, phytochemicals, recombinant cytokines, and nanoparticles (NPs) in conjugation to phytochemicals to treat cancer. Researchers have identified multiple targets to specifically alter inflammation in cancer therapy to restrict malignant progression and improve the efficacy of cancer therapy. siRNA-and shRNA-loaded NPs have been observed to downregulate STAT3 signaling pathways and have been employed in studies to target tumor malignancies. This review highlights the pathways involved in the interaction between tumor advancement and inflammatory progression, along with the novel approaches of nanotechnology-based drug delivery systems currently used to target inflammatory signaling pathways to combat cancer.


Subject(s)
Nanomedicine , Phosphatidylinositol 3-Kinases , Humans , Phosphatidylinositol 3-Kinases/metabolism , Comprehension , Neoplasm Recurrence, Local , Signal Transduction , Inflammation/drug therapy
6.
J Cell Mol Med ; 27(5): 593-608, 2023 03.
Article in English | MEDLINE | ID: mdl-36756687

ABSTRACT

Centella asiatica is an ethnomedicinal herbaceous species that grows abundantly in tropical and sub-tropical regions of China, India, South-Eastern Asia and Africa. It is a popular nutraceutical that is employed in various forms of clinical and cosmetic treatments. C. asiatica extracts are reported widely in Ayurvedic and Chinese traditional medicine to boost memory, prevent cognitive deficits and improve brain functions. The major bioactive constituents of C. asiatica are the pentacyclic triterpenoid glycosides, asiaticoside and madecassoside, and their corresponding aglycones, asiatic acid and madecassic acid. Asiaticoside and madecassoside have been identified as the marker compounds of C. asiatica in the Chinese Pharmacopoeia and these triterpene compounds offer a wide range of pharmacological properties, including neuroprotective, cardioprotective, hepatoprotective, wound healing, anti-inflammatory, anti-oxidant, anti-allergic, anti-depressant, anxiolytic, antifibrotic, antibacterial, anti-arthritic, anti-tumour and immunomodulatory activities. Asiaticoside and madecassoside are also used extensively in treating skin abnormalities, burn injuries, ischaemia, ulcers, asthma, lupus, psoriasis and scleroderma. Besides medicinal applications, these phytocompounds are considered cosmetically beneficial for their role in anti-ageing, skin hydration, collagen synthesis, UV protection and curing scars. Existing reports and experimental studies on these compounds between 2005 and 2022 have been selectively reviewed in this article to provide a comprehensive overview of the numerous therapeutic advantages of asiaticoside and madecassoside and their potential roles in the medical future.


Subject(s)
Triterpenes , Triterpenes/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Glycosides , Wound Healing
7.
Mol Cancer ; 22(1): 105, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37415164

ABSTRACT

Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted therapy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin-dependent kinases, poly (ADP-ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple-negative breast cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC patients. Different immunotherapeutic modalities including immune-checkpoint blockade, vaccination, and adoptive cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA has already approved some immune-checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were critically discussed to portray their profound prospects.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Immunotherapy/methods , Combined Modality Therapy , Molecular Targeted Therapy/methods
8.
Mol Cancer ; 22(1): 22, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36721153

ABSTRACT

Malignant brain tumors rank among the most challenging type of malignancies to manage. The current treatment protocol commonly entails surgery followed by radiotherapy and/or chemotherapy, however, the median patient survival rate is poor. Recent developments in immunotherapy for a variety of tumor types spark optimism that immunological strategies may help patients with brain cancer. Chimeric antigen receptor (CAR) T cells exploit the tumor-targeting specificity of antibodies or receptor ligands to direct the cytolytic capacity of T cells. Several molecules have been discovered as potential targets for immunotherapy-based targeting, including but not limited to EGFRvIII, IL13Rα2, and HER2. The outstanding clinical responses to CAR T cell-based treatments in patients with hematological malignancies have generated interest in using this approach to treat solid tumors. Research results to date support the astounding clinical response rates of CD19-targeted CAR T cells, early clinical experiences in brain tumors demonstrating safety and evidence for disease-modifying activity, and the promise for further advances to ultimately assist patients clinically. However, several variable factors seem to slow down the progress rate regarding treating brain cancers utilizing CAR T cells. The current study offers a thorough analysis of CAR T cells' promise in treating brain cancer, including design and delivery considerations, current strides in clinical and preclinical research, issues encountered, and potential solutions.


Subject(s)
Brain Neoplasms , Immunotherapy, Adoptive , Humans , Adaptor Proteins, Signal Transducing , Antibodies , Antigens, CD19 , Brain Neoplasms/therapy , Cell Death , Receptors, Chimeric Antigen , T-Lymphocytes
9.
Curr Issues Mol Biol ; 45(2): 903-917, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36826003

ABSTRACT

BACKGROUND: Globally, diabetes mellitus is the most common cause of premature mortality after cardiovascular diseases and tobacco chewing. It is a heterogeneous metabolic disorder characterised by the faulty metabolism of carbohydrates, fats and proteins as a result of defects in insulin secretion or resistance. It was estimated that approximately 463 million of the adult population are suffering from diabetes mellitus, which may grow up to 700 million by 2045. Solanum indicum is distributed all over India and all of the tropical and subtropical regions of the world. The different parts of the plant such as the roots, leaves and fruits were used traditionally in the treatment of cough, asthma and rhinitis. However, the hypoglycaemic activity of the plant is not scientifically validated. PURPOSE: The present study aimed to evaluate the antioxidant, antidiabetic and anti-hyperlipidaemic activity of methanolic fruit extract of Solanum indicum (SIE) in streptozotocin (STZ) induced diabetic rats. METHOD: Experimentally, type II diabetes was induced in rats by an i.p. injection of STZ at a dose of 60 mg/kg. The effect of the fruit extract was evaluated at doses of 100 and 200 mg/kg body weight in STZ-induced diabetic rats for 30 days. RESULT: The oral administration of fruit extract caused a significant (p < 0.05) reduction in the blood glucose level with a more prominent effect at 200 mg/kg. The fruit extract showed dose-dependent α-amylase and α-glycosidase inhibitory activity. It reduced the serum cholesterol and triglyceride levels remarkably in diabetic rats compared to normal. The extract showed the reduced activity of endogenous antioxidants, superoxide dismutase, glutathione peroxidase and catalase in the liver of STZ diabetic rats. CONCLUSION: The result confirmed that the fruit extract of Solanum indicum showed a dose-dependent blood glucose lowering effect and significantly reduced elevated blood cholesterol and triglycerides. It prevented oxidative stress associated with type II diabetes in STZ rats.

10.
Mol Pharm ; 20(8): 3804-3828, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37478169

ABSTRACT

Rosacea is a multifactorial chronic inflammatory dermatosis characterized by flushing, nontransient erythema, papules and pustules, telangiectasia, and phymatous alterations accompanied by itching, burning, or stinging, the pathophysiology of which is not yet fully understood. Conventional topical treatments usually show limited efficacy due to the physical barrier property of the skin that hinders skin penetration of the active ingredients, thereby hampering proper drug skin delivery and the respective therapeutic or cosmetic effects. New advances regarding the physiopathological understanding of the disease and the underlying mechanisms suggest the potential of new active ingredients as promising therapeutic and cosmetic approaches to this dermatosis. Additionally, the development of new drug delivery systems for skin delivery, particularly the potential of nanoparticles for the topical treatment and care of rosacea, has been described. Emphasis has been placed on their reduced nanometric size, which contributes to a significant improvement in the attainment of targeted skin drug delivery. In addition to the exposition of the known pathophysiology, epidemiology, diagnosis, and preventive measures, this Review covers the topical approaches used in the control of rosacea, including skin care, cosmetics, and topical therapies, as well as the future perspectives on these strategies.


Subject(s)
Dermatologic Agents , Rosacea , Humans , Rosacea/drug therapy , Rosacea/diagnosis , Rosacea/pathology , Administration, Topical , Chronic Disease , Dermatologic Agents/therapeutic use
11.
Crit Rev Food Sci Nutr ; 63(19): 3302-3332, 2023.
Article in English | MEDLINE | ID: mdl-34613853

ABSTRACT

Persistent respiratory tract inflammation contributes to the pathogenesis of various chronic respiratory diseases, such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. These inflammatory respiratory diseases have been a major public health concern as they are the leading causes of worldwide mortality and morbidity, resulting in heavy burden on socioeconomic growth throughout these years. Although various therapeutic agents are currently available, the clinical applications of these agents are found to be futile due to their adverse effects, and most patients remained poorly controlled with a low quality of life. These drawbacks have necessitated the development of novel, alternative therapeutic agents that can effectively improve therapeutic outcomes. Recently, nutraceuticals such as probiotics, vitamins, and phytochemicals have gained increasing attention due to their nutritional properties and therapeutic potential in modulating the pathological mechanisms underlying inflammatory respiratory diseases, which could ultimately result in improved disease control and overall health outcomes. As such, nutraceuticals have been held in high regard as the possible alternatives to address the limitations of conventional therapeutics, where intensive research are being performed to identify novel nutraceuticals that can positively impact various inflammatory respiratory diseases. This review provides an insight into the utilization of nutraceuticals with respect to their molecular mechanisms targeting multiple signaling pathways involved in the pathogenesis of inflammatory respiratory diseases.


Subject(s)
Asthma , Respiratory Tract Diseases , Humans , Quality of Life , Dietary Supplements , Asthma/drug therapy , Respiratory Tract Diseases/drug therapy
12.
Appl Microbiol Biotechnol ; 107(7-8): 2155-2167, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36922438

ABSTRACT

Genus Crinum L. is a member of the Amaryllidaceae family having beautiful, huge, ornamental plants with umbels of lily-like blooms that are found in tropical and subtropical climates all over the world. For thousands of years, Crinum has been used as a traditional medicine to treat illnesses and disorders. Numerous distinct alkaloids of the Amaryllidaceae group, whose most well-known properties include analgesic, anticholinergic, antitumor, and antiviral, have recently been discovered by phytochemical analyses. However, because of decades of overexploitation for their economically significant bioactive ingredients and poor seed viability and germination rates, these plants are now threatened in their native environments. Because of these factors, researchers are investigating micropropagation techniques to optimize phytochemicals in vitro. This review's objective is to offer details on the distribution, phytochemistry, micropropagation, in vitro galanthamine synthesis, and pharmacology which will help to design biotechnological techniques for the preservation, widespread multiplication, and required secondary metabolite production from Crinum spp. KEY POINTS: • Botanical description and phytochemical profile of Crinum spp. • In vitro micropropagation method of Crinum sp. • Bioactive compound galanthamine isolation techniques and its pharmacological properties.


Subject(s)
Alkaloids , Crinum , Crinum/chemistry , Plant Extracts/pharmacology , Galantamine , Alkaloids/chemistry , Phytochemicals
13.
Metab Brain Dis ; 38(1): 45-59, 2023 01.
Article in English | MEDLINE | ID: mdl-36239867

ABSTRACT

Major depressive disorder (MDD) or Depression is one of the serious neuropsychiatric disorders affecting over 280 million people worldwide. It is 4th important cause of disability, poor quality of life, and economic burden. Women are more affected with the depression as compared to men and severe depression can lead to suicide. Most of the antidepressants predominantly work through the modulation on the availability of monoaminergic neurotransmitter (NTs) levels in the synapse. Current antidepressants have limited efficacy and tolerability. Moreover, treatment resistant depression (TRD) is one of the main causes for failure of standard marketed antidepressants. Recently, inflammation has also emerged as a crucial factor in pathological progression of depression. Proinflammatory cytokine levels are increased in depressive patients. Antidepressant treatment may attenuate depression via modulation of pathways of inflammation, transformation in structure of brain, and synaptic plasticity. Hence, targeting inflammation may be emerged as an effective approach for the treatment of depression. The present review article will focus on the preclinical and clinical studies that targets inflammation. In addition, it also concentrates on the therapeutic approaches' that targets depression via influence on the inflammatory signaling pathways. Graphical abstract demonstrate the role of various factors in the progression and neuroinflammation, oxidative stress. It also exhibits the association of neuroinflammation, oxidative stress with depression.


Subject(s)
Depressive Disorder, Major , Male , Humans , Female , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Depression/drug therapy , Neuroinflammatory Diseases , Quality of Life , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism
14.
Mar Drugs ; 21(4)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37103352

ABSTRACT

Chitin is the second most abundant biopolymer consisting of N-acetylglucosamine units and is primarily derived from the shells of marine crustaceans and the cell walls of organisms (such as bacteria, fungi, and algae). Being a biopolymer, its materialistic properties, such as biodegradability, and biocompatibility, make it a suitable choice for biomedical applications. Similarly, its deacetylated derivative, chitosan, exhibits similar biocompatibility and biodegradability properties, making it a suitable support material for biomedical applications. Furthermore, it has intrinsic material properties such as antioxidant, antibacterial, and antitumor. Population studies have projected nearly 12 million cancer patients across the globe, where most will be suffering from solid tumors. One of the shortcomings of potent anticancer drugs is finding a suitable cellular delivery material or system. Therefore, identifying new drug carriers to achieve effective anticancer therapy is becoming essential. This paper focuses on the strategies implemented using chitin and chitosan biopolymers in drug delivery for cancer treatment.


Subject(s)
Antineoplastic Agents , Chitosan , Nanoparticles , Neoplasms , Humans , Chitosan/therapeutic use , Chitin , Drug Delivery Systems , Biopolymers , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
15.
Altern Ther Health Med ; 29(3): 67-73, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35212647

ABSTRACT

Context: Lymphopenia has been frequently documented and linked to coronavirus disease 2019 (COVID-19) in a severe acute respiratory syndrome (SARS)-coronavirus 2 (CoV-2) attack. A decrease in the T-lymphocyte count has shown promise as a clinical indicator and predictor of COVID-19 severity. Objective: The review intended to examine the relationship of COVID-19 infections in individuals to lost expression of CD28 on naive CD4+/CD8+-mediated, vaccine-specific, neutralizing antibody responses. Design: The research team performed a narrative review by searching eight databases: Medline, Elsevier, Cochrane, PubMed, Google Scholar, Mendeley, and Springer Nature. The search used the following key terms: SARS CoV-2, clinical aspects and pathology of SARS CoV-2, involvement of viral spike (S) protein in SARS CoV-2, immunological changes in COVID-19 infection, basic overview of CD28 immuno-molecule ligand, reduction of vaccine therapeutic efficacy in COVID-19 infection, and immunomodulatory response of lost CD28 ligand. Setting: This study was done in a Maharishi Arvind College of Pharmacy, Jaipur, India. Results: In COVID-19 patients, particularly those with severe disease, had increased levels of IL-2 or IL-2R. Given IL-2's supportive role in the expansion and differentiation of T cells, the authors exhibiting that lymphopenia, particularly in severe COVID-19, could be attributed to nonfunctional and dysfunctional differentiation of CD4+ and CD8+ T cells as a result of low CD28 immuno-molecule expression on naive T cells. Conclusions: The literature review found that independent, early immunological prognostic markers for a poor prognosis, in addition to higher levels of IL-6, include a substantial proportion of large inflammatory monocytes and a small proportion of chronic CD28+ CD4+T cells. The current findings suggest that a combination of COVID-19 vaccination with SARS CoV-2-reactive naive T cells with the CD28 immune-molecule may be a viable method for establishing T-cell-based, adaptive cellular immunotherapy against COVID-19 infection. Further research is needed, especially larger studies to confirm the current findings, to improve early clinical treatment.


Subject(s)
COVID-19 , Lymphopenia , Humans , CD28 Antigens , COVID-19 Vaccines , Interleukin-2 , Ligands , SARS-CoV-2
16.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36982297

ABSTRACT

Rotenone (ROT) is a naturally derived pesticide and a well-known environmental neurotoxin associated with induction of Parkinson's disease (PD). Limonene (LMN), a naturally occurring monoterpene, is found ubiquitously in citrus fruits and peels. There is enormous interest in finding novel therapeutic agents that can cure or halt the progressive degeneration in PD; therefore, the main aim of this study is to investigate the potential neuroprotective effects of LMN employing a rodent model of PD measuring parameters of oxidative stress, neuro-inflammation, and apoptosis to elucidate the underlying mechanisms. PD in experimental rats was induced by intraperitoneal injection of ROT (2.5 mg/kg) five days a week for a total of 28 days. The rats were treated with LMN (50 mg/kg, orally) along with intraperitoneal injection of ROT (2.5 mg/kg) for the same duration as in ROT-administered rats. ROT injections induced a significant loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and DA striatal fibers following activation of glial cells (astrocytes and microglia). ROT treatment enhanced oxidative stress, altered NF-κB/MAPK signaling and motor dysfunction, and enhanced the levels/expressions of inflammatory mediators and proinflammatory cytokines in the brain. There was a concomitant mitochondrial dysfunction followed by the activation of the Hippo signaling and intrinsic pathway of apoptosis as well as altered mTOR signaling in the brain of ROT-injected rats. Oral treatment with LMN corrected the majority of the biochemical, pathological, and molecular parameters altered following ROT injections. Our study findings demonstrate the efficacy of LMN in providing protection against ROT-induced neurodegeneration.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Rats , Animals , Rotenone/pharmacology , Limonene/pharmacology , Glutathione/metabolism , Neuroinflammatory Diseases , Monoterpenes/pharmacology , Hippo Signaling Pathway , Parkinson Disease/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Apoptosis , Dopaminergic Neurons/metabolism
17.
Int J Mol Sci ; 24(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37762315

ABSTRACT

Cancer chemotherapy with doxorubicin (DOX) may have multiorgan toxicities including cardiotoxicity, and this is one of the major limitations of its clinical use. The present study aimed to evaluate the cardioprotective role of α-Bisabolol (BSB) in DOX-induced acute cardiotoxicity in rats and the underlying pharmacological and molecular mechanisms. DOX (12.5 mg/kg, single dose) was injected intraperitoneally into the rats for induction of acute cardiotoxicity. BSB was given orally to rats (25 mg/kg, p.o. twice daily) for a duration of five days. DOX administration induced cardiac dysfunction as evidenced by altered body weight, hemodynamics, and release of cardio-specific diagnostic markers. The occurrence of oxidative stress was evidenced by a significant decline in antioxidant defense along with a rise in lipid peroxidation and hyperlipidemia. Additionally, DOX also increased the levels and expression of proinflammatory cytokines and inflammatory mediators, as well as activated NF-κB/MAPK signaling in the heart, following alterations in the Nrf2/Keap-1/HO-1 and Akt/mTOR/GSK-3ß signaling. DOX also perturbed NLRP3 inflammasome activation-mediated pyroptosis in the myocardium of rats. Furthermore, histopathological studies revealed cellular alterations in the myocardium. On the contrary, treatment with BSB has been observed to preserve the myocardium and restore all the cellular, molecular, and structural perturbations in the heart tissues of DOX-induced cardiotoxicity in rats. Results of the present study clearly demonstrate the protective role of BSB against DOX-induced cardiotoxicity, which is attributed to its potent antioxidant, anti-inflammatory, and antihyperlipidemic effects resulting from favorable modulation of numerous cellular signaling regulatory pathways, viz., Nrf2/Keap-1/HO-1, Akt/mTOR/GSK-3ß, NF-κB/p38/MAPK, and NLRP3 inflammasomes, in countering the cascades of oxidative stress and inflammation. The observations suggest that BSB can be a promising agent or an adjuvant to limit the cardiac injury caused by DOX. Further studies including the role in tumor-bearing animals as well as regulatory toxicology are suggested.

18.
Molecules ; 28(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36838876

ABSTRACT

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in social interaction and communication along with repetitive stereotypic behaviors. Currently, there are no specific biomarkers for diagnostic screening or treatments available for autistic patients. Numerous genetic disorders are associated with high prevalence of ASD, including tuberous sclerosis complex, phosphatase and tensin homolog, and fragile X syndrome. Preclinical investigations in animal models of these diseases have revealed irregularities in the PI3K/Akt/mTOR signaling pathway as well as ASD-related behavioral defects. Reversal of the downstream molecular irregularities, associated with mTOR hyperactivation, improved the behavioral deficits observed in the preclinical investigations. Plant bioactive molecules have shown beneficial pre-clinical evidence in ASD treatment by modulating the PI3K/Akt/mTOR pathway. In this review, we summarize the involvement of the PI3K/Akt/mTOR pathway as well as the genetic alterations of the pathway components and its critical impact on the development of the autism spectrum disorder. Mutations in negative regulators of mTORC1, such as TSC1, TSC2, and PTEN, result in ASD-like phenotypes through the disruption of the mTORC1-mediated signaling. We further discuss the various naturally occurring phytoconstituents that have been identified to be bioactive and modulate the pathway to prevent its disruption and contribute to beneficial therapeutic effects in ASD.


Subject(s)
Autism Spectrum Disorder , Animals , Autism Spectrum Disorder/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism
19.
J Cell Mol Med ; 26(11): 3083-3119, 2022 06.
Article in English | MEDLINE | ID: mdl-35502487

ABSTRACT

Piper betle L. (synonym: Piper betel Blanco), or betel vine, an economically and medicinally important cash crop, belongs to the family Piperaceae, often known as the green gold. The plant can be found all over the world and is cultivatedprimarily in South East Asian countries for its beautiful glossy heart-shaped leaves, which are chewed or consumed as betelquidand widely used in Chinese and Indian folk medicine, as carminative, stimulant,astringent, against parasitic worms, conjunctivitis, rheumatism, wound, etc., andis also used for religious purposes. Hydroxychavicol is the most important bioactive compound among the wide range of phytoconstituents found in essential oil and extracts. The pharmacological attributes of P. betle are antiproliferation, anticancer, neuropharmacological, analgesic, antioxidant, antiulcerogenic, hepatoprotective, antifertility, antibacterial, antifungal and many more. Immense attention has been paid to nanoformulations and their applications. The application of P. betle did not show cytotoxicity in preclinical experiments, suggesting that it could serve as a promising therapeutic candidate for different diseases. The present review comprehensively summarizes the botanical description, geographical distribution, economic value and cultivation, ethnobotanical uses, preclinical pharmacological properties with insights of toxicological, clinical efficacy, and safety of P. betle. The findings suggest that P. betle represents an orally active and safe natural agent that exhibits great therapeutic potential for managing various human medical conditions. However, further research is needed to elucidate its underlying molecular mechanisms of action, clinical aspects, structure-activity relationships, bioavailability and synergistic interactions with other drugs.


Subject(s)
Piper betle , Antioxidants/pharmacology , Antioxidants/therapeutic use , Ethnopharmacology , Piper betle/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves/chemistry
20.
Mol Cancer ; 21(1): 204, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307808

ABSTRACT

Brain cancer is regarded among the deadliest forms of cancer worldwide. The distinct tumor microenvironment and inherent characteristics of brain tumor cells virtually render them resistant to the majority of conventional and advanced therapies. Oxidative stress (OS) is a key disruptor of normal brain homeostasis and is involved in carcinogenesis of different forms of brain cancers. Thus, antioxidants may inhibit tumorigenesis by preventing OS induced by various oncogenic factors. Antioxidants are hypothesized to inhibit cancer initiation by endorsing DNA repair and suppressing cancer progression by creating an energy crisis for preneoplastic cells, resulting in antiproliferative effects. These effects are referred to as chemopreventive effects mediated by an antioxidant mechanism. In addition, antioxidants minimize chemotherapy-induced nonspecific organ toxicity and prolong survival. Antioxidants also support the prooxidant chemistry that demonstrate chemotherapeutic potential, particularly at high or pharmacological doses and trigger OS by promoting free radical production, which is essential for activating cell death pathways. A growing body of evidence also revealed the roles of exogenous antioxidants as adjuvants and their ability to reverse chemoresistance. In this review, we explain the influences of different exogenous and endogenous antioxidants on brain cancers with reference to their chemopreventive and chemotherapeutic roles. The role of antioxidants on metabolic reprogramming and their influence on downstream signaling events induced by tumor suppressor gene mutations are critically discussed. Finally, the review hypothesized that both pro- and antioxidant roles are involved in the anticancer mechanisms of the antioxidant molecules by killing neoplastic cells and inhibiting tumor recurrence followed by conventional cancer treatments. The requirements of pro- and antioxidant effects of exogenous antioxidants in brain tumor treatment under different conditions are critically discussed along with the reasons behind the conflicting outcomes in different reports. Finally, we also mention the influencing factors that regulate the pharmacology of the exogenous antioxidants in brain cancer treatment. In conclusion, to achieve consistent clinical outcomes with antioxidant treatments in brain cancers, rigorous mechanistic studies are required with respect to the types, forms, and stages of brain tumors. The concomitant treatment regimens also need adequate consideration.


Subject(s)
Antioxidants , Brain Neoplasms , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Brain Neoplasms/drug therapy , Carcinogenesis , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL