Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38328072

ABSTRACT

Cerebral (Aß) plaque and (pTau) tangle deposition are hallmarks of Alzheimer's disease (AD), yet are insufficient to confer complete AD-like neurodegeneration experimentally. Factors acting upstream of Aß/pTau in AD remain unknown, but their identification could enable earlier diagnosis and more effective treatments. T cell abnormalities are emerging AD hallmarks, and CD8 T cells were recently found to mediate neurodegeneration downstream of tangle deposition in hereditary neurodegeneration models. The precise impact of T cells downstream of Aß/fibrillar pTau, however, appears to vary depending on the animal model used. Our prior work suggested that antigen-specific memory CD8 T (" hi T") cells act upstream of Aß/pTau after brain injury. Here we examine whether hi T cells influence sporadic AD-like pathophysiology upstream of Aß/pTau. Examining neuropathology, gene expression, and behavior in our hi T mouse model we show that CD8 T cells induce plaque and tangle-like deposition, modulate AD-related genes, and ultimately result in progressive neurodegeneration with both gross and fine features of sporadic human AD. T cells required Perforin to initiate this pathophysiology, and IFNγ for most gene expression changes and progression to more widespread neurodegenerative disease. Analogous antigen-specific memory CD8 T cells were significantly elevated in the brains of human AD patients, and their loss from blood corresponded to sporadic AD and related cognitive decline better than plasma pTau-217, a promising AD biomarker candidate. Our work is the first to identify an age-related factor acting upstream of Aß/pTau to initiate AD-like pathophysiology, the mechanisms promoting its pathogenicity, and its relevance to human sporadic AD. Significance Statement: This study changes our view of Alzheimer's Disease (AD) initiation and progression. Mutations promoting cerebral beta-amyloid (Aß) deposition guarantee rare genetic forms of AD. Thus, the prevailing hypothesis has been that Aß is central to initiation and progression of all AD, despite contrary animal and patient evidence. We show that age-related T cells generate neurodegeneration with compelling features of AD in mice, with distinct T cell functions required for pathological initiation and neurodegenerative progression. Knowledge from these mice was applied to successfully predict previously unknown features of human AD and generate novel tools for its clinical management.

2.
Oncogene ; 42(25): 2088-2098, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37161052

ABSTRACT

The promise of adaptive cancer immunotherapy in treating highly malignant tumors such as glioblastoma multiforme (GBM) can only be realized through expanding its benefits to more patients. Alleviating various modes of immune suppression has so far failed to achieve such expansion, but exploiting endogenous immune enhancers among mutated cancer genes could represent a more direct approach to immunotherapy improvement. We found that Isocitrate Dehydrogenase-1 (IDH1), which is commonly mutated in gliomas, enhances glioma vaccine efficacy in mice and discerns long from short survivors after vaccine therapy in GBM patients. Extracellular IDH1 directly enhanced T cell responses to multiple tumor antigens, and prolonged experimental glioma cell lysis. Moreover, IDH1 specifically bound to and exhibited sialidase activity against CD8. By contrast, mutant IDH1R132H lacked sialidase activity, delayed killing in glioma cells, and decreased host survival after immunotherapy. Overall, our findings identify IDH1 as an immunotherapeutic enhancer that mediates the known T cell-enhancing reaction of CD8 desialylation. This uncovers a new axis for immunotherapeutic improvement in GBM and other cancers, reveals novel physiological and molecular functions of IDH1, and hints at an unexpectedly direct link between lytic T cell function and metabolic activity in target cells.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Mice , Animals , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , N-Acetylneuraminic Acid , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Brain Neoplasms/metabolism , Neuraminidase , Glioma/genetics , Glioma/therapy , Glioma/metabolism , Glioblastoma/genetics , Glioblastoma/therapy , CD8-Positive T-Lymphocytes/metabolism , Immunotherapy , Mutation
3.
Eur J Neurosci ; 31(5): 788-96, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20374280

ABSTRACT

Beta amyloid (Abeta) plays a central role in the pathogenesis of Alzheimer's disease. Abeta is the major constituent of senile plaques, but there is a significant presence of Abeta in the brain in soluble forms. The results of functional studies indicate that soluble Abeta interacts with the alpha7 nicotinic acetylcholine receptor (nAChR) complex with apparent high affinity. However, conflicting data exist as to the nature of the Abeta-alpha7 nAChR interaction, and whether it is the result of specific binding. Moreover, both agonist-like and antagonist-like effects have been reported. In particular, agonist-like effects have been observed for presynaptic nAChRs. Here, we demonstrate Abeta(1-42)-evoked stimulatory changes in presynaptic Ca(2+) level via exogenous alpha7 nAChRs expressed in the axonal varicosities of differentiated hybrid neuroblastoma NG108-15 cells as a model, presynaptic system. The Abeta(1-42)-evoked responses were concentration-dependent and were sensitive to the highly selective alpha7 nAChR antagonist alpha-bungarotoxin. Voltage-gated Ca(2+) channels and internal Ca(2+) stores were both involved in Abeta(1-42)-evoked increases in presynaptic Ca(2+) following activation of alpha7 nAChRs. In addition, disruption of lipid rafts by cholesterol depletion led to substantially attenuated responses to Abeta(1-42), whereas responses to nicotine were largely intact. These results directly implicate the nicotinic receptor complex as a target for the agonist-like action of pico- to nanomolar concentrations of soluble Abeta(1-42) on the presynaptic nerve terminal, including the possible involvement of receptor-associated lipid rafts. This interaction probably plays an important neuromodulatory role in synaptic dynamics.


Subject(s)
Amyloid beta-Peptides/metabolism , Membrane Microdomains/metabolism , Neurons/metabolism , Receptors, Nicotinic/metabolism , Animals , Evoked Potentials/physiology , Immunohistochemistry , Mice , Microscopy, Confocal , Rats , Synapses/metabolism , alpha7 Nicotinic Acetylcholine Receptor
4.
Front Neurol ; 11: 557269, 2020.
Article in English | MEDLINE | ID: mdl-33424735

ABSTRACT

The incidence of autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), which frequently co-occur, are both rising. The causes of ASD and ADHD remain elusive, even as both appear to involve perturbation of the gut-brain-immune axis. CD103 is an integrin and E-cadherin receptor most prominently expressed on CD8 T cells that reside in gut, brain, and other tissues. CD103 deficiency is well-known to impair gut immunity and resident T cell function, but it's impact on neurodevelopmental disorders has not been examined. We show here that CD8 T cells influence neural progenitor cell function, and that CD103 modulates this impact both directly and potentially by controlling CD8 levels in brain. CD103 knockout (CD103KO) mice exhibited a variety of behavioral abnormalities, including superior cognitive performance coupled with repetitive behavior, aversion to novelty and social impairment in females, with hyperactivity with delayed learning in males. Brain protein markers in female and male CD103KOs coincided with known aspects of ASD and ADHD in humans, respectively. Surprisingly, CD103 deficiency also decreased age-related cognitive decline in both sexes, albeit by distinct means. Together, our findings reveal a novel role for CD103 in brain developmental function, and identify it as a unique factor linking ASD and ADHD etiology. Our data also introduce a new animal model of combined ASD and ADHD with associated cognitive benefits, and reveal potential therapeutic targets for these disorders and age-related cognitive decline.

5.
Mech Ageing Dev ; 191: 111351, 2020 10.
Article in English | MEDLINE | ID: mdl-32910956

ABSTRACT

Mitigating effects of aging on human health remains elusive because aging impacts multiple systems simultaneously, and because experimental animals exhibit critical aging differences relative to humans. Separation of aging into discrete processes may identify targetable drivers of pathology, particularly when applied to human-specific features. Gradual homeostatic expansion of CD8 T cells dominantly alters their function in aging humans but not in mice. Injecting T cells into athymic mice induces rapid homeostatic expansion, but its relevance to aging remains uncertain. We hypothesized that homeostatic expansion of T cells injected into T-deficient hosts models physiologically relevant CD8 T cell aging in young mice, and aimed to analyze age-related T cell phenotype and tissue pathology in such animals. Indeed, we found that such injection conferred uniform age-related phenotype, genotype, and function to mouse CD8 T cells, heightened age-associated tissue pathology in young athymic hosts, and humanized amyloidosis after brain injury in secondary wild-type recipients. This validates a model conferring a human-specific aging feature to mice that identifies targetable drivers of tissue pathology. Similar examination of independent aging features should promote systematic understanding of aging and identify additional targets to mitigate its effects on human health.


Subject(s)
Aging/immunology , Amyloidosis/immunology , Brain Injuries/immunology , CD8-Positive T-Lymphocytes/immunology , Cellular Senescence/immunology , Aging/genetics , Amyloidosis/genetics , Animals , Cellular Senescence/genetics , Female , Humans , Mice , Mice, Knockout , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL