Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Nature ; 586(7827): 145-150, 2020 10.
Article in English | MEDLINE | ID: mdl-32968273

ABSTRACT

Natural products serve as chemical blueprints for most antibiotics in clinical use. The evolutionary process by which these molecules arise is inherently accompanied by the co-evolution of resistance mechanisms that shorten the clinical lifetime of any given class of antibiotics1. Virginiamycin acetyltransferase (Vat) enzymes are resistance proteins that provide protection against streptogramins2, potent antibiotics against Gram-positive bacteria that inhibit the bacterial ribosome3. Owing to the challenge of selectively modifying the chemically complex, 23-membered macrocyclic scaffold of group A streptogramins, analogues that overcome the resistance conferred by Vat enzymes have not been previously developed2. Here we report the design, synthesis, and antibacterial evaluation of group A streptogramin antibiotics with extensive structural variability. Using cryo-electron microscopy and forcefield-based refinement, we characterize the binding of eight analogues to the bacterial ribosome at high resolution, revealing binding interactions that extend into the peptidyl tRNA-binding site and towards synergistic binders that occupy the nascent peptide exit tunnel. One of these analogues has excellent activity against several streptogramin-resistant strains of Staphylococcus aureus, exhibits decreased rates of acetylation in vitro, and is effective at lowering bacterial load in a mouse model of infection. Our results demonstrate that the combination of rational design and modular chemical synthesis can revitalize classes of antibiotics that are limited by naturally arising resistance mechanisms.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Drug Design , Drug Resistance, Bacterial/drug effects , Streptogramin Group A/chemical synthesis , Streptogramin Group A/pharmacology , Acetylation/drug effects , Acetyltransferases/genetics , Acetyltransferases/metabolism , Animals , Anti-Bacterial Agents/classification , Bacterial Load/drug effects , Binding Sites , Cryoelectron Microscopy , Female , In Vitro Techniques , Mice , Microbial Sensitivity Tests , Models, Molecular , RNA, Transfer/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Streptogramin Group A/chemistry , Streptogramin Group A/classification , Virginiamycin/analogs & derivatives , Virginiamycin/chemistry , Virginiamycin/metabolism
2.
J Am Chem Soc ; 146(7): 4892-4902, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38319883

ABSTRACT

Nidulaxanthone A is a dimeric, dihydroxanthone natural product that was isolated in 2020 from Aspergillus sp. Structurally, the compound features an unprecedented heptacyclic 6/6/6/6/6/6/6 ring system which is unusual for natural xanthone dimers. Biosynthetically, nidulaxanthone A originates from the monomer nidulalin A via stereoselective Diels-Alder dimerization. To expedite the synthesis of nidulalin A and study the proposed dimerization, we developed methodology involving the use of allyl triflate for chromone ester activation, followed by vinylogous addition, to rapidly forge the nidulalin A scaffold in a four-step sequence which also features ketone desaturation using Bobbitt's oxoammonium salt. An asymmetric synthesis of nidulalin A was achieved using acylative kinetic resolution (AKR) of chiral, racemic 2H-nidulalin A. Dimerization of enantioenriched nidulalin A to nidulaxanthone A was achieved using solvent-free, thermolytic conditions. Computational studies have been conducted to probe both the oxoammonium-mediated desaturation and (4 + 2) dimerization events.


Subject(s)
Ketones , Xanthines , Sodium Chloride , Dimerization
3.
J Am Chem Soc ; 146(19): 13445-13454, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708818

ABSTRACT

An unprecedented caged 2H-benzo-dioxo-pentacycloundecane framework was serendipitously obtained in a single transformation via triple-dearomative photocycloaddition of chromone esters with furans. This caged structure was generated as part of an effort to access a tricyclic, oxygen-bridged intermediate enroute to the dihydroxanthone natural product nidulalin A. Reaction scope and limitations were thoroughly investigated, revealing the ability to access a multitude of synthetically challenging caged scaffolds in a two-step sequence. Photophysical studies provided key mechanistic insights on the process for formation of the novel caged scaffold.

4.
Sensors (Basel) ; 24(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38400310

ABSTRACT

The transmission spectrum of a narrow-band interference filter is crucial and highly influenced by factors such as the temperature and angle, thus requiring precise and online measurements. The traditional method of measuring the transmission spectrum of an interference filter involves the use of a spectrometer, but the accuracy of this method is limited. Moreover, placing a narrow-band interference filter inside a spectrometer hinders real-time online measurements. To address this issue, there is demand for high-precision online spectral testing methods. In response to this demand, we propose and experimentally validate a fine spectral characterization method for narrow-band interference filters. This method uses a narrow-linewidth tunable laser, achieving a spectral resolution in the MHz range for online testing. Two types of narrow-band interference filters were tested using the constructed laser spectroscopy experimental system, obtaining a transmission spectrum with a spectral resolution of 318 MHz. In comparison to spectrometer-based methods, our proposed method demonstrates higher spectral accuracy, enables online measurements, and provides more accurate measurements for special spectral interference filters. This approach has significant application value and promising development prospects.

5.
Appl Opt ; 62(13): 3431-3438, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37132844

ABSTRACT

In this paper, by using advanced numerical models, we investigate the impact of the AlN/GaN distributed Bragg reflector (DBR) and AlInN/GaN DBR on stimulated radiative recombination for GaN-based vertical-cavity-surface-emitting lasers (VCSELs). According to our results, when compared with the VCSEL with AlN/GaN DBR, we find that the VCSEL with AlInN/GaN DBR decreases the polarization-induced electric field in the active region, and this helps to increase the electron-hole radiative recombination. However, we also find that the AlInN/GaN DBR has a reduced reflectivity when compared with the AlN/GaN DBR with the same number of pairs. Furthermore, this paper suggests that more pairs of AlInN/GaN DBR will be set, which helps to even further increase the laser power. Hence, the 3 dB frequency can be increased for the proposed device. In spite of the increased laser power, the smaller thermal conductivity for AlInN than AlN results in the earlier thermal droop in the laser power for the proposed VCSEL.

SELECTION OF CITATIONS
SEARCH DETAIL