ABSTRACT
Monkeys serve as important model species for studying human diseases and developing therapeutic strategies, yet the application of monkeys in biomedical researches has been significantly hindered by the difficulties in producing animals genetically modified at the desired target sites. Here, we first applied the CRISPR/Cas9 system, a versatile tool for editing the genes of different organisms, to target monkey genomes. By coinjection of Cas9 mRNA and sgRNAs into one-cell-stage embryos, we successfully achieve precise gene targeting in cynomolgus monkeys. We also show that this system enables simultaneous disruption of two target genes (Ppar-γ and Rag1) in one step, and no off-target mutagenesis was detected by comprehensive analysis. Thus, coinjection of one-cell-stage embryos with Cas9 mRNA and sgRNAs is an efficient and reliable approach for gene-modified cynomolgus monkey generation.
Subject(s)
Gene Targeting/methods , Macaca fascicularis/genetics , Animals , Base Sequence , Cell Line , Embryo, Mammalian/metabolism , Female , Humans , Molecular Sequence Data , Mosaicism , Sequence AlignmentABSTRACT
The development of transgenic technologies in monkeys is important for creating valuable animal models of human physiology so that the etiology of diseases can be studied and potential therapies for their amelioration may be developed. However, the efficiency of producing transgenic primate animals is presently very low, and there are few reports of success. We have developed an improved methodology for the production of transgenic rhesus monkeys, making use of a simian immunodeficiency virus (SIV)-based vector that encodes EGFP and a protocol for infection of early-cleavage-stage embryos. We show that infection does not alter embryo development. Moreover, the timing of infection, either before or during embryonic genome activation, has no observable effect on the level and stability of transgene expression. Of 70 embryos injected with concentrated virus at the one- to two-cell stage or the four- to eight-cell stage and showing fluorescence, 30 were transferred to surrogate mothers. One transgenic fetus was obtained from a fraternal triple pregnancy. Four infant monkeys were produced from four singleton pregnancies, of which two expressed EGFP throughout the whole body. These results demonstrate the usefulness of SIV-based lentiviral vectors for the generation of transgenic monkeys and improve the efficiency of transgenic technology in nonhuman primates.
Subject(s)
Animals, Genetically Modified/genetics , Gene Transfer Techniques , Macaca mulatta/genetics , Models, Animal , Animals , Blotting, Southern , Cleavage Stage, Ovum , DNA Primers/genetics , Female , Flow Cytometry , Fluorescent Dyes , Genetic Vectors/genetics , Green Fluorescent Proteins/genetics , Immunohistochemistry , Polymerase Chain Reaction , Pregnancy , Simian Immunodeficiency VirusABSTRACT
Soil fungal community structure and diversity are highly sensitive to variations in the external environment, as well as soil improvement measures. In order to clarify the effects of soil improvement measures on topsoil fertility or quality, a field experiment was conducted in eroded forest of a red soil region. Organic fertilizer, biochar, and lime+microbial fertilizer were added to the topsoil, respectively. After four years, the chemistry properties and nutrients in the topsoil were measured, and the diversity and composition of fungi were analyzed. The results showed that the additions of organic fertilizer, biochar, and lime+microbial fertilizer reduced fungal richness in topsoil, compared to that with no fertilizer addition (CK). Among them, lime+microbial fertilizer had the most negative effect on fungal richness. The three soil improvement measures also affected the diversity of topsoil fungi, but the impacts were not significant. The dominant fungal phyla in the topsoil were Ascomycota (31.29%-46.55%) and Basidiomycota (30.07%-70.71%), and the dominant fungal genera were Amphinema and Archaeorhizomyces. The effects of soil improvement measures on fungal community structure in the topsoil were different; organic fertilizer increased the relative abundance of Ascomycetes and Archaeopteroides, and biochar enhanced the relative abundance of Basidiomycetes and Archaeopteroides, whereas lime+microbial fertilizer improved the relative abundance of Basidiomycetes and Archaeopteroides. Fungal diversity and community structure in the topsoil was affected by edaphic factors, and fungal richness was regulated by pH value, whereas fungal community structure was influenced by pH, total nitrogen, and organic carbon. This study provides scientific guidance for soil improvement and ecological restoration below the canopy in eroded forests of red soil regions.
Subject(s)
Mycobiome , Soil , Soil/chemistry , Forests , Soil MicrobiologyABSTRACT
Much effort has been focused on improving assisted reproductive technology procedures in humans and nonhuman primates (NHPs). However, the pregnancy rate after embryo transfer (ET) has not been satisfactory, indicating that some barriers still need to be overcome in this important procedure. One of the key factors is embryouterine synchronicity, which is little known in NHPs. The objective of this study was to investigate the available ET time window in rhesus monkey (Macaca mulatta). Eighty-two adult female rhesus monkeys were superovulated with recombinant human FSH. Ovarian phases were identified according to estrogen (E2) and progesterone (P4) levels as well as ovarian examination by ultrasonography and laparoscopy. A total of 259 embryos were transferred by the laparoscopic approach into the oviducts of 63 adult female monkeys. Ovarian phases were divided into late follicular and early luteal phases. Similar pregnancy rates (3036.4%) were obtained from recipients receiving ET either in their late follicular or early luteal phases, regardless of embryo developmental stages. This study indicates that the available time window for ET in rhesus monkeys is from the late follicular to early luteal phases.
Subject(s)
Embryo Transfer/veterinary , Fertilization in Vitro/veterinary , Macaca mulatta/physiology , Pregnancy Outcome/veterinary , Pregnancy Rate , Animals , Embryo, Mammalian , Embryonic Development , Estrogens/blood , Female , Follicle Stimulating Hormone, Human/administration & dosage , Follicular Phase , Humans , Luteal Phase , Oocytes/growth & development , Ovary/diagnostic imaging , Pregnancy , Progesterone/blood , Recombinant Proteins/administration & dosage , Superovulation , Time Factors , UltrasonographyABSTRACT
rES (rhesus monkey embryonic stem) cells have similar characteristics to human ES (embryonic stem) cells, and might be useful as a substitute model for preclinical research. Before their clinical application, it is critical to understand the roles of factors that control the differentiation of ES cells into hepatocytes. Here, we analysed the effect of collagen gels on rES cells differentiation into hepatocytes by stepwise protocols. About 80% of DE (definitive endoderm) cells were generated from rES cells after being treated with activin A. The DE cells were then plated on to collagen gels or type I collagen-coated wells with growth factors to induce hepatocyte differentiation. In type I collagen systems, characteristics of immature hepatocytes were observed, including the expression of immature hepatic genes and the generation of 15±3% AFP (alpha fetoprotein)/CK (cytokeratin)18 double-positive cells. In collagen gel culture, differentiated cells exhibited typical hepatocyte morphology and expressed adult liver-specific genes. The mRNA expression of AFP (immature hepatic gene) was detected at day 11 but decreased at day 18. In contrast, mRNA expression of albumin (mature hepatic gene) was detected at day 11 and increased at day 18. Compared with type I collagen systems, significantly higher AFP/CK18 double-positive cells (68±7%) were produced in collagen gel culture. Furthermore, some differentiated cells acquired the hepatocytic function of glycogen storage. However, only immature hepatic genes were observed in collagen gel systems if growth factors were absent. Thus, collagen gels combined with hepatocyte-inducing growth factors efficiently promoted differentiation of hepatocytes from rES.
Subject(s)
Cell Differentiation/drug effects , Collagen/pharmacology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Hepatocytes/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Activins/pharmacology , Albumins/biosynthesis , Animals , Cell Line , Collagen/metabolism , Embryonic Stem Cells/cytology , Gels/metabolism , Hepatocytes/cytology , Hepatocytes/drug effects , Keratins/biosynthesis , Liver/embryology , Liver/metabolism , Macaca mulatta , RNA, Messenger/biosynthesis , Receptors, CXCR4/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , SOXF Transcription Factors/biosynthesis , Tissue Engineering , alpha-Fetoproteins/biosynthesisABSTRACT
The objective was to examine the effect of seminal plasma on cryopreservation of sperm from rhesus macaques. Sperm cryosurvival was evaluated by sperm motility and acrosomal integrity. Compared with slow cooling (-0.4 C/min) from 37 C (body temperature) to 4 C, rapid cooling (-16 C/min) caused cold shock in rhesus macaque sperm. The cryosurvival of sperm was decreased regardless of the presence or absence of seminal plasma (P<0.05). However, the presence of seminal plasma during cold shock at a rapid cooling rate improved sperm motility and acrosomal integrity in individual monkeys. Male-to-male variation in sperm cryosurvival was observed after cryopreservation (P<0.05), and the presence of seminal plasma during sperm cryopreservation improved sperm motility and acrosomal integrity in individual monkeys (P<0.05). Furthermore, by adding seminal plasma from monkeys with good sperm cryosurvival to sperm freezing extender, the frozen-thawed motility and acrosomal integrity of sperm from monkey with poor cryosurvival were improved (P<0.05). The present study indicated that seminal fluid is beneficial to sperm undergoing cold shock or cryopreservation in individual monkeys. The cryosurvival of sperm from rhesus macaques with poor sperm freezability could be improved by the presence of seminal plasma from males with good sperm cryosurvival. This finding provides a useful method for genetic preservation in this important species.
Subject(s)
Cryopreservation/methods , Cryoprotective Agents/pharmacology , Semen Preservation/methods , Semen/drug effects , Spermatozoa/drug effects , Animals , Macaca mulatta , Male , Semen AnalysisABSTRACT
Nonalcoholic steatohepatitis has emerged as a major cause of liver diseases with no effective therapies. Here, we evaluate the efficacies and pharmacokinetics of B1344, a long-acting polyethylene glycolylated (PEGylated) fibroblast growth factor 21 analog, in a nongenetically modified nonhuman primate species that underwent liver biopsy and demonstrate the potential for efficacies in humans. B1344 is sufficient to selectively activate signaling from the ßKlotho/FGFR1c receptor complex. In cynomolgus monkeys with nonalcoholic fatty liver disease (NAFLD), administration of B1344 via subcutaneous injection for 11 weeks caused a profound reduction of hepatic steatosis, inflammation, and fibrosis, along with amelioration of liver injury and hepatocyte death, as evidenced by liver biopsy specimen and biochemical analysis. Moreover, improvement of metabolic parameters was observed in the monkeys, including reduction of body weight and improvement of lipid profiles and glycemic control. To determine the role of B1344 in the progression of murine NAFLD independent of obesity, B1344 was administered to mice fed a methionine- and choline-deficient diet. Consistently, B1344 administration prevented the mice from lipotoxicity damage and nonalcoholic steatohepatitis in a dose-dependent manner. These results provide preclinical validation for an innovative therapeutic approach to NAFLD and support further clinical testing of B1344 for treating nonalcoholic steatohepatitis and other metabolic diseases in humans.
Subject(s)
Fibroblast Growth Factors/pharmacokinetics , Fibroblast Growth Factors/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Body Weight/drug effects , Cell Line , Choline , Fibrosis/blood , Fibrosis/drug therapy , Inflammation/blood , Inflammation/drug therapy , Liver/drug effects , Liver/metabolism , Macaca fascicularis , Male , Methionine , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/blood , Primates , Rats , Signal Transduction/drug effectsABSTRACT
A simple monoculture system, combined with a chemically defined medium containing hepatocyte growth factor (HGF) and G5 supplement, was used to induce rhesus monkey embryonic stem cells (rESC) directly into neuroepithelial (NE) cells. Under these conditions, the generation of NE cells did not require the formation of embryoid bodies or co-culture with other cell types. The NE cells could further develop to generate neurons, astrocytes and oligodendrocytes. These results demonstrate a simple approach to obtain enriched and expandable populations of neural progenitors. Importantly, unlike other systems, the neural progenitors obtained using this approach may possess the potential to differentiate into various regional neural cells. Finally, the results suggest that the time-dependent shift in the differentiation potential of the rESC-derived neural progenitors in vitro reflects the developmental events that occur during neurogenesis in vivo. Thus, this system can be used to study the mechanisms of cell fate specification during non-human primate neurogenesis.
Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Neurons/physiology , Animals , Astrocytes/physiology , Cell Culture Techniques , Cell Differentiation/physiology , Cells, Cultured , Coculture Techniques , Humans , Macaca mulatta , Neurogenesis/physiology , Oligodendroglia/physiologyABSTRACT
Somatic cell nuclear transfer (SCNT) is a remarkable process in which a somatic cell nucleus is acted upon by the ooplasm via mechanisms that today remain unknown. Here we show the developmental competence (% blastocyst) of embryos derived from SCNT (21%) was markedly (p < 0.05) impaired compared with those derived from in vitro fertilization (IVF) (42.1%) in rhesus monkey. Also, SCNT embryos were abnormal in their time course of embryonic development. SCNT produced embryos reached the eight-cell stage faster than did IVF produced embryos. We compare the transcription patterns of five nucleolar-related proteins-nucleolin, nucleophosmin, fibrillarin, PAF53, and UBF-in single IVF and SCNT blastocysts by RT-PCR. The SCNT embryos showed abnormal gene transcription. Immunolocalization of fibrillarin was undetectable in 8-cell and 16-cell SCNT embryos, indicating embryonic genomic activation was delayed in monkey embryos produced by SCNT compared to their IVF-derived counterparts. Some of SCNT embryos appeared to relative higher developmental potential and fibrillarin expression by prolonged exposure of incoming nuclei to a cytoplasm. Thus, our data show that SCNT embryos are characterized by abnormal cleavage and the timely onset of embryonic genome transcription, deficits that may explain their reduced pre- and postimplantation developmental capacity.
Subject(s)
Embryonic Development/genetics , Genome , Macaca mulatta/genetics , Macaca mulatta/physiology , Nuclear Transfer Techniques/veterinary , Animals , Embryo Transfer/veterinary , Embryo, Mammalian , Embryonic Development/physiology , Female , Fertilization in Vitro , Gene Expression Profiling , Gene Expression Regulation, Developmental , Macaca mulatta/embryology , Time FactorsABSTRACT
Recent advances in gene editing technology have introduced the potential for application of mutagenesis approaches in nonhuman primates to model human development and disease. Here we report successful TALEN-mediated mutagenesis of an X-linked, Rett syndrome (RTT) gene, methyl-CpG binding protein 2 (MECP2), in both rhesus and cynomolgus monkeys. Microinjection of MECP2-targeting TALEN plasmids into rhesus and cynomolgus zygotes leads to effective gene editing of MECP2 with no detected off-target mutagenesis. Male rhesus (2) and cynomolgous (1) fetuses carrying MECP2 mutations in various tissues including testes were miscarried during midgestation, consistent with RTT-linked male embryonic lethality in humans. One live delivery of a female cynomolgus monkey occurred after 162 days of gestation, with abundant MECP2 mutations in peripheral tissues. We conclude that TALEN-mediated mutagenesis can be an effective tool for genetic modeling of human disease in nonhuman primates.
Subject(s)
Endonucleases/metabolism , Macaca fascicularis/genetics , Macaca mulatta/genetics , Methyl-CpG-Binding Protein 2/genetics , Mutagenesis/genetics , Trans-Activators/metabolism , Amino Acid Sequence , Animals , Base Sequence , Female , Humans , Male , Methyl-CpG-Binding Protein 2/chemistry , Molecular Sequence DataABSTRACT
Efficient culture of primary biliary epithelial cells (BECs) from adult liver is useful for both experimental studies and clinical applications of tissue engineering. However, an effective culture system for long-term proliferation of adult BECs is still unachieved. Laboratory rabbit has been used in a large number of studies; however, there are no reports of BECs from normal adult rabbit. As little as 5 g of normal rabbit liver tissue were minced, digested, and then clonally cultured in medium containing FBS and ITS. Cells were characterized by cell morphology, immunoassaying, and growth rate assay. Different combination of growth factors and substrates, including Y-27632 and Matrigel, were employed to assess their effect on cell proliferation. In the primary culture, the BECs cellular sheets consisting of cuboidal cells, as well as fibroblast-like cells and other hepatic cells, emerged with time of culture. The BECs cellular sheets were then manually split into cells clumps for further characterization. The subcultured cells had typical cell morphology of cholangiocytes, expressed the specific markers of BECs, including GGT, cytokeratin (CK18), and CK19, and possessed the capacity to form duct-like structure in three-dimensional Matrigel. Y-27632 and Matrigel-treated BECs had a steady growth rate as well as colony-formation capacity. The BECs were maintained in Y-27632 and Matrigel culture system for more than 3 mo. This is the first example, to our knowledge, of the successful culture of BECs from normal adult rabbit liver. Furthermore, our results indicate that treatment of BECs with Y-27632 and Matrigel is a simple method for efficient output of BECs.
Subject(s)
Bile Ducts/cytology , Cell Proliferation/drug effects , Cell Separation/methods , Epithelial Cells/cytology , Amides/pharmacology , Animals , Collagen/pharmacology , Drug Combinations , Laminin/pharmacology , Proteoglycans/pharmacology , Pyridines/pharmacology , RabbitsABSTRACT
Rhesus monkey embryonic stem (rES) cells have similar characteristics to human ES cells, and might be useful as a substitute model for preclinical research. Notch signaling is involved in the formation of bile ducts, which are composed of cholangiocytes. However, little is known about the role of Notch signaling in cholangiocytic commitment of ES cells. We analyzed the effect of Notch signaling on the induction of cholangiocyte-like cells from rES cells. About 80% of definitive endoderm (DE) cells were generated from rES cells after treatment with activin A. After treatment with BMP4 and FGF1 on matrigel coated wells in serum-free medium, rES-derived DE gave rise to cholangiocyte-like cells by expression of cholangiocytic specific proteins (CK7, CK18, CK19, CK20, and OV-6) and genes (GSTPi, IB4, and HNF1ß). At the same time, expression of Notch 1 and Notch 2 mRNA were detected during cell differentiation, as well as their downstream target genes such as Hes 1 and Hes 5. Inhibition of the Notch signal pathway by L-685458 resulted in decreased expression of Notch and their downstream genes. In addition, the proportion of cholangiocyte-like cells declined from approximately 90% to approximately 20%. These results suggest that Notch signaling may play a critical role in cholangiocytic development from ES cells.
Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Endoderm/cytology , Receptors, Notch/metabolism , Signal Transduction , Animals , Cell Line , Endoderm/metabolism , Humans , Macaca mulatta , Models, Animal , Receptors, Notch/geneticsABSTRACT
Recent evidences indicate that retinal muller cells exhibit retinal progenitor characteristics under certain condition in chick, rat and human. However, there is no report on nonhuman primate, a close relative to human. In this study, we first established a muller cell line of rhesus monkey expressing GS, vimentin, CRALBP, EGFR, barely GFAP, which resemble the expression profile of human muller cells, differ from that of rodent. Expression of pax6, nestin, sox2, otx2, six6, and six3 was detected after one week culture in neural stem cell medium. Further culture with retinoic acid induced some cells differentiate toward neuron. These results suggest that primate muller cell is capable of dedifferentiating to retinal progenitors, which may serve as a potential cell source for cell therapy to treat retinal degenerative diseases.
Subject(s)
Retina/cytology , Stem Cells/cytology , Animals , Cell Differentiation , Cells, Cultured , Humans , Macaca mulatta/genetics , Macaca mulatta/metabolism , Neurons/cytology , Neurons/metabolism , Retina/metabolism , Stem Cells/metabolismABSTRACT
The origin of the myofibroblast, the primary effector cell of liver fibrosis, is still elusive. Here, we report that fluorescence-activated cell sorting purified E-cad + rhesus monkey liver epithelial progenitor cells (mLEPCs) may serve as a potential source for liver myofibroblasts. Adult mLEPCs colonies were cultured in medium containing 2 ng/ml transforming growth factor ß (TGF-ß) and 10% fetal bovine serum (FBS) to induce differentiation. Phenotypic changes of cells were analyzed by morphological observation, immunostaining, and reverse transcription-polymerase chain reaction (RT-PCR). After cultured with TGF-ß and FBS, some cells in adult mLEPCs colonies converted to fibroblasts-like cells. Immunostaining showed that fibroblasts-like cells had acquired the expression of mesenchymal cell marker vimentin but lost the expression of epithelial cell marker CK8. Fibroblasts-like cells were maintained in culture for up to 40 passages. RT-PCR analysis revealed that fibroblasts-like cells had acquired the expression of mesenchymal genes (snail, PAI-1, and collagen I) and lost the expression of epithelial specific genes (E-cad, ZO-1, CK18, and occludin). In addition, more than 60% of fibroblasts-like cells expressed myofibroblastic-related proteins such as αSMA, vimentin, and N-cad, which were not presented in mLEPCs. Furthermore, increased cell motility was also detected in these fibroblasts-like cells by time-lapse video observation. Our results demonstrate that hepatic epithelial progenitor cells, mLEPCs, transform to myofibroblast-like cells via epithelial-mesenchymal transition. This finding will facilitate understanding of the origin of myofibroblasts in liver fibrosis.
Subject(s)
Epithelial Cells/cytology , Liver/cytology , Myofibroblasts/cytology , Stem Cells/cytology , Animals , Cell Differentiation , Cells, Cultured , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Flow Cytometry , Immunohistochemistry , Liver/metabolism , Macaca mulatta , Myofibroblasts/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacologyABSTRACT
Ethylene glycol (EG) has been speculated to be the most appropriate penetrating cryoprotectant for cryopreservation of rhesus macaque sperm due to its higher permeability coefficient. The present study aimed to determine the optimal EG concentration, freezing rate and holding time in liquid nitrogen (LN(2)) vapor for rhesus sperm cryopreservation. Among six tested EG concentrations (0, 0.18, 0.35, 0.7, 1.4 and 2.1 M), 0.7 M EG showed the most effective cryoprotection (P<0.05). Sperm frozen with 0.7 M EG at -183°C/min showed higher post-thaw motility than sperm frozen at -10, -67 or -435°C/min (P<0.05). Sperm frozen in LN(2) vapor at -183°C/min with 0.7 M EG and a holding time of 10 min showed higher post-thaw motility compared with a holding time of 5 or 15 min (P<0.05). The function of sperm cryopreserved at the optimized EG concentration, freezing rate and holding time was further evaluated by in vitro fertilization. Of the 36 oocytes collected from gonadotropin-stimulated rhesus macaques, 61.1% were fertilized, and 61.1, 44.4 and 36.1% of the oocytes developed to 2 cells, morulae and blastocysts, respectively. Our findings provide an alternative penetrating cryoprotectant and optimal protocol for genetic preservation purposes in this important species.
Subject(s)
Cryopreservation/veterinary , Cryoprotective Agents , Ethylene Glycol , Macaca mulatta , Semen Preservation/veterinary , Spermatozoa , Acrosome/physiology , Animals , Cryopreservation/methods , Female , Fertilization in Vitro/veterinary , Male , Semen Preservation/methods , Sperm Motility/physiologyABSTRACT
Studies with hepatic progenitor cells from non-human primates would allow better understanding of their human counterparts. In this study, rhesus monkey liver epithelial progenitor cells (mLEPCs) were derived from a small piece of newborn livers in chemical defined serum-free medium. Digested hepatic cells were treated in Ca(2+)-containing medium to form cell aggregates. Two types of cell aggregates were generated: elongated spindle cells and polygonal epithelial cells. Elongated spindle cells were expressed as vimentin and brachyury, and they were disappeared within 5 d in our cultures. The remaining type consisted of small polygonal epithelial cells that expressed cytokeratin 7 (CK7), CK8, CK18, nestin, CD49f, and E-cad, the markers of hepatic stem cells, but were negative for alpha-fetoprotein, albumin, and CK19. They can proliferate and be passaged, if on laminin or rat tail collagen gel, to initiate colonies. When cultured with dexamethasone and oncostatin M, the expression of mature hepatocyte markers, such as alpha-1-antitrypsin, intracytoplasmic glycogen storage, indocyanine green uptake, and lipid droplet generation, were induced in differentiated cells. If transferred onto mouse embryonic fibroblasts feeders, they gave rise to CK19-positive cholangiocytes with formation of doughnut-like structure. Thus, mLEPCs with bipotency were derived from newborn monkey liver and may serve as a preclinical model for assessment of cell therapy in humans.
Subject(s)
Cell Culture Techniques , Epithelial Cells/cytology , Liver/cytology , Stem Cells/cytology , Animals , Animals, Newborn , Cadherins/analysis , Cell Aggregation , Cell Differentiation , Culture Media, Serum-Free , Dexamethasone/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Integrin alpha6/analysis , Intermediate Filament Proteins/analysis , Keratins, Type II/analysis , Liver/drug effects , Liver/metabolism , Macaca mulatta , Mice , Nerve Tissue Proteins/analysis , Nestin , Oncostatin M/pharmacology , Rats , Stem Cells/drug effects , Stem Cells/metabolism , alpha 1-Antitrypsin/analysisABSTRACT
The objective was to develop a freezing protocol using a directional freezing (DF) technique for cryopreservation of rhesus macaque sperm and achieve a survival rate comparable to that achieved with a conventional freezing (CF) technique. Rhesus macaque sperm frozen with a DF technique, with cooling rates of 12 or 16 °C/min, had higher post-thaw motility (P < 0.05) than those cooled at 7 °C/min (59.3, 61.1, and 50.3%, respectively). Furthermore, sperm cryopreserved with 5% glycerol and a DF technique had similar frozen-thawed sperm motility to those cryopreserved by a CF technique (63.7 vs. 53.9%, P > 0.05). The function of sperm cryopreserved at the optimized cooling rate using a DF technique was evaluated by in vitro fertilization of oocytes collected from gonadotropin-stimulated rhesus macaques. Of the 38 mature oocytes collected, 78.9% were fertilized and 71.1, 47.4, and 42.1% of the oocytes developed to the 2-cell, morulae, and blastocyst stages, respectively. In conclusion, rhesus macaque sperm was effectively cryopreserved using a DF technique, providing a new and effective method for genetic preservation in this important species.
Subject(s)
Cryopreservation/veterinary , Macaca mulatta , Semen Preservation/veterinary , Spermatozoa/physiology , Acrosome/ultrastructure , Animals , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Female , Fertilization in Vitro/veterinary , Freezing , Male , Semen Preservation/methods , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/ultrastructureABSTRACT
The common culture system of rhesus monkey embryonic stem (rES) cells depends largely on feeder cells and serum, which limits the research and application of rES cells. This study reports a feeder layer-free and serum-free system for culture of rES cells. rES cells could be cultured through at least 22 passages on laminin in medium supplemented with serum replacement (SR), basic fibroblast growth factor (bFGF) and transforming growth factor beta1 (TGFbeta1), and maintained stable proliferation rates and normal karyotypes, while displaying all the embryonic stem cell characteristics including morphology, alkaline phosphatase (AKP), Oct-4, cell surface markers SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81, and formed cystic embryoid bodies in vitro. In addition, the studies showed that TGFbeta1, bFGF and laminin are necessary for maintaining the undifferentiated growth of rES cells in long-term culture. Moreover, withdrawal of TGFbeta1 increased the differentiation rate by decreasing the expression of integrins. Therefore, this system would provide a well-defined culture system for rES cells, and would facilitate research into self-renewal and differentiation mechanisms of rES cells.
Subject(s)
Culture Media, Serum-Free/pharmacology , Culture Media/pharmacology , Stem Cells/cytology , Animals , Cells, Cultured , Embryo, Mammalian/cytology , Extracellular Matrix Proteins/pharmacology , Female , Fibroblast Growth Factor 2/pharmacology , Karyotyping , Laminin/pharmacology , Macaca mulatta , Stem Cells/drug effects , Transforming Growth Factor beta/pharmacologyABSTRACT
The integrin and extracellular matrix protein (ECM)-mediated adhesion and invasion of the receptive maternal uterine endometrium by trophoblasts is a critical event in the complex physiological process of pregnancy. Although the process has been largely characterized in mice, the relevant mechanism in primates remains unclear. We investigated the expression patterns and dynamic alterations of integrin subunits (alpha1, alpha5, alpha6, beta1, and beta4) and their ECM ligands, such as laminin (LN), type IV collagen (Col IV), and fibronectin (FN), at the maternal-fetal interface during Gestational Days 15, 25, 50, and 100 and at full term in 20 pregnant rhesus monkeys. Immunohistochemistry and in situ hybridization revealed that a relatively high expression of integrins occurred in trophoblast cells at Gestational Day 15, with the peak level occurring at Day 25. The expression level decreased from Day 50 to term. Along the invasive pathway, expression levels of integrin alpha1, alpha5, and beta1 subunits were gradually elevated from the proximal to distal column, reaching peak level in the trophoblast shell, but were reduced in those invasive extravillous cytotrophoblast (EVCT) cells in contact with the decidua. Integrin alpha1, alpha5, beta1, and beta4 subunits were also highly expressed in decidual stromal cells and moderately expressed in the maternal epithelium and endothelium. Immunoreactive FN, LN, and Col IV were distributed in EVCT and decidual stromal cells and part of the uterine epithelial and endothelial cells. These data suggest that the correlated expression of integrins and their ECM ligands at the maternal-fetal interface might be involved in regulation of cell proliferation and differentiation and the counterbalanced invasion-accelerating and invasion-restraining processes in trophoblast cells during the early stage of pregnancy.